skip to content
Modelling airframe noise : from aerodynamic topology to acoustic efficiency Preview this item
ClosePreview this item
Checking...

Modelling airframe noise : from aerodynamic topology to acoustic efficiency

Author: Wagner José Gonçalves Da Silva PintoYves Gervais, (acousticien).Florent MargnatPhillip JosephMarc C Jacob, (professeur).All authors
Publisher: 2019.
Dissertation: Thèse de doctorat : Acoustique et aéroacoustique : Poitiers : 2019.
Edition/Format:   Computer file : Document : Thesis/dissertation : English
Summary:
L'influence de la forme de cylindres longs sur leur rayonnement acoustique en écoulement est étudiée. Des simulations bidimensionnelles (2D) sont réalisées à bas nombre de Reynolds (Re=20-200), à l'aide du code de calcul direct (DNS) incompressible incompact3D au moyen d'une méthode de frontière immergée (IBM). Une formule dérivée de l'équation de Curle pour un cylindre compact permet la quantification
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Thèses et écrits académiques
Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Wagner José Gonçalves Da Silva Pinto; Yves Gervais, (acousticien).; Florent Margnat; Phillip Joseph; Marc C Jacob, (professeur).; Manfred Kaltenbacher; Andreas Spohn; Véronique Fortuné; Eric Manoha; Université de Poitiers.; Ecole doctorale Sciences et Ingénierie des Matériaux, Mécanique, Energétique (Poitiers).; Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers).; École nationale supérieure d'ingénieurs (Poitiers).
OCLC Number: 1162818978
Notes: Titre provenant de l'écran-titre.
Description: 1 online resource
Responsibility: Wagner José Gonçalves Da Silva Pinto ; sous la direction de Yves Gervais et de Florent Margnat.

Abstract:

L'influence de la forme de cylindres longs sur leur rayonnement acoustique en écoulement est étudiée. Des simulations bidimensionnelles (2D) sont réalisées à bas nombre de Reynolds (Re=20-200), à l'aide du code de calcul direct (DNS) incompressible incompact3D au moyen d'une méthode de frontière immergée (IBM). Une formule dérivée de l'équation de Curle pour un cylindre compact permet la quantification de l'émission acoustique en 2D. En soufflerie anéchoïque, la signature acoustique d'une trentaine de géométries est mesurée, Re=4,000-53,000 ; l'anémométrie par fil chaud est utilisée pour la description des propriétés axiales de l'écoulement. L'avant corps et l'allongement (AR) sont les plus importantes propriétés géométriques tant pour l'écoulement que pour le rayonnement acoustique en 2D. Les géométries allongées sont généralement les plus silencieuses car les tourbillons sont moins intenses et repoussés vers l'aval et l'apparition de l'instationnarité est retardée. De leur côté, les résultats expérimentaux montrent que les géométries allongées sont les plus bruyantes, ce qui est à l'opposé des conclusions précédentes. Ceci est justifié par une augmentation significative de la cohérence de l'écoulement en envergure pour les AR les plus longs, presque complètement en phase, donc plus efficace acoustiquement. Globalement, cela implique que les géométries dont l'écoulement 2D est faiblement perturbé, marqué par un déclenchement plus tardif de l'instationnarité (Reynolds critique plus élevé), sont aussi plus organisées en 3D aux Re des mesures. La relation sous-jacente entre les transitions successives vers la turbulence nécessite une étude approfondie.

The influence of the shape on the sound emission of cylindrical bluff-bodies is studied. Simulations are performed in two-dimensions (2D) at low-Reynolds number (Re=20-200), with the incompressible direct Navier-Stokes (DNS) solver incompact3D, using the Immersed Boundary Method (IBM) formalism; the acoustic emission is evaluated by a single formula derived from Curle's equation for compact cylinders. In anechoic wind tunnel, the acoustic signature is measured for about 30 geometries, Re=4,000-53,000; hot-wire measurements of the spanwise flow characteristics are performed for a subset of the tested cylinders. The influence of both the shape of the upstream portion of the geometry and the breadth-to-height ratio (AR) are proved to be major features in terms of both the flow and its acoustic emission in 2D. By reducing the strength of the vortices and pushing them downstream and affecting the mechanics of the von Kármán instability (delaying the transition to unsteadiness), stretched shapes (with higher AR) are generally quieter. From the experiments, it is found that the geometries of biggest AR are the loudest, contraposing the results obtained in 2D. The disparity is justified by a significant increase of the spanwise coherence associated with the larger AR's, practically fully-phased, thus more acoustically efficient. Globally, it is implied that geometries which have weakly perturbed flow in 2D, marked by a later transition to unsteadiness (larger critical Reynolds number), are also more organized in 3D, high-Reynolds number regimes. The underlying relationship between low and high-Reynolds number transitions must be further investigated.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1162818978<\/a>> # Modelling airframe noise : from aerodynamic topology to acoustic efficiency<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:MediaObject<\/a>, schema:CreativeWork<\/a>, bgn:Thesis<\/a>, bgn:ComputerFile<\/a> ;\u00A0\u00A0\u00A0\nbgn:inSupportOf<\/a> \"Th\u00E8se de doctorat : Acoustique et a\u00E9roacoustique : Poitiers : 2019.<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1162818978<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/620.107\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/620.2\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/sillage_aerodynamique<\/a>> ; # Sillage (a\u00E9rodynamique)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/coherence<\/a>> ; # Coh\u00E9rence<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/essais_en_soufflerie_aerodynamique<\/a>> ; # Essais en soufflerie a\u00E9rodynamique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/bruit_aerodynamique<\/a>> ; # Bruit a\u00E9rodynamique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/sillage_de_von_karman<\/a>> ; # Sillage de Von Karman<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/optimisation_de_forme<\/a>> ; # Optimisation de forme<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/simulation_numerique_directe<\/a>> ; # Simulation Num\u00E9rique Directe<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/ecoulement_d_obstacle<\/a>> ; # \u00C9coulement d\'obstacle<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/533.62\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/ecoulement_instationnaire_dynamique_des_fluides<\/a>> ; # \u00C9coulement instationnaire (dynamique des fluides)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/bruit_de_cylindre<\/a>> ; # Bruit de cylindre<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/navier_stokes_equations_de_solutions_numeriques<\/a>> ; # Navier-Stokes, \u00C9quations de--Solutions num\u00E9riques<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/sifflement_eolien<\/a>> ; # Sifflement \u00E9olien<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/aeroacoustique<\/a>> ; # A\u00E9roacoustique<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/goncalves_da_silva_pinto_wagner_jose_1992<\/a>> ; # Wagner Jos\u00E9 Gon\u00E7alves Da Silva Pinto<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/gervais_yves_acousticien<\/a>> ; # (acousticien). Yves Gervais<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/ecole_nationale_superieure_d_ingenieurs_poitiers<\/a>> ; # \u00C9cole nationale sup\u00E9rieure d\'ing\u00E9nieurs (Poitiers).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/fortune_veronique<\/a>> ; # V\u00E9ronique Fortun\u00E9<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/jacob_marc_c_professeur<\/a>> ; # (professeur). Marc C. Jacob<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/kaltenbacher_manfred<\/a>> ; # Manfred Kaltenbacher<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/universite_de_poitiers<\/a>> ; # Universit\u00E9 de Poitiers.<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/margnat_florent_1980<\/a>> ; # Florent Margnat<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/manoha_eric<\/a>> ; # Eric Manoha<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/joseph_phillip<\/a>> ; # Phillip Joseph<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/spohn_andreas<\/a>> ; # Andreas Spohn<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/ecole_doctorale_sciences_et_ingenierie_des_materiaux_mecanique_energetique_poitiers<\/a>> ; # Ecole doctorale Sciences et Ing\u00E9nierie des Mat\u00E9riaux, M\u00E9canique, Energ\u00E9tique (Poitiers).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/pole_poitevin_de_recherche_pour_l_ingenieur_en_mecanique_materiaux_et_energetique_pprimme_poitiers<\/a>> ; # P\u00F4le poitevin de recherche pour l\'ing\u00E9nieur en m\u00E9canique, mat\u00E9riaux et \u00E9nerg\u00E9tique - PPRIMME (Poitiers).<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2019<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"L\'influence de la forme de cylindres longs sur leur rayonnement acoustique en \u00E9coulement est \u00E9tudi\u00E9e. Des simulations bidimensionnelles (2D) sont r\u00E9alis\u00E9es \u00E0 bas nombre de Reynolds (Re=20-200), \u00E0 l\'aide du code de calcul direct (DNS) incompressible incompact3D au moyen d\'une m\u00E9thode de fronti\u00E8re immerg\u00E9e (IBM). Une formule d\u00E9riv\u00E9e de l\'\u00E9quation de Curle pour un cylindre compact permet la quantification de l\'\u00E9mission acoustique en 2D. En soufflerie an\u00E9cho\u00EFque, la signature acoustique d\'une trentaine de g\u00E9om\u00E9tries est mesur\u00E9e, Re=4,000-53,000 ; l\'an\u00E9mom\u00E9trie par fil chaud est utilis\u00E9e pour la description des propri\u00E9t\u00E9s axiales de l\'\u00E9coulement. L\'avant corps et l\'allongement (AR) sont les plus importantes propri\u00E9t\u00E9s g\u00E9om\u00E9triques tant pour l\'\u00E9coulement que pour le rayonnement acoustique en 2D. Les g\u00E9om\u00E9tries allong\u00E9es sont g\u00E9n\u00E9ralement les plus silencieuses car les tourbillons sont moins intenses et repouss\u00E9s vers l\'aval et l\'apparition de l\'instationnarit\u00E9 est retard\u00E9e. De leur c\u00F4t\u00E9, les r\u00E9sultats exp\u00E9rimentaux montrent que les g\u00E9om\u00E9tries allong\u00E9es sont les plus bruyantes, ce qui est \u00E0 l\'oppos\u00E9 des conclusions pr\u00E9c\u00E9dentes. Ceci est justifi\u00E9 par une augmentation significative de la coh\u00E9rence de l\'\u00E9coulement en envergure pour les AR les plus longs, presque compl\u00E8tement en phase, donc plus efficace acoustiquement. Globalement, cela implique que les g\u00E9om\u00E9tries dont l\'\u00E9coulement 2D est faiblement perturb\u00E9, marqu\u00E9 par un d\u00E9clenchement plus tardif de l\'instationnarit\u00E9 (Reynolds critique plus \u00E9lev\u00E9), sont aussi plus organis\u00E9es en 3D aux Re des mesures. La relation sous-jacente entre les transitions successives vers la turbulence n\u00E9cessite une \u00E9tude approfondie.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"The influence of the shape on the sound emission of cylindrical bluff-bodies is studied. Simulations are performed in two-dimensions (2D) at low-Reynolds number (Re=20-200), with the incompressible direct Navier-Stokes (DNS) solver incompact3D, using the Immersed Boundary Method (IBM) formalism; the acoustic emission is evaluated by a single formula derived from Curle\'s equation for compact cylinders. In anechoic wind tunnel, the acoustic signature is measured for about 30 geometries, Re=4,000-53,000; hot-wire measurements of the spanwise flow characteristics are performed for a subset of the tested cylinders. The influence of both the shape of the upstream portion of the geometry and the breadth-to-height ratio (AR) are proved to be major features in terms of both the flow and its acoustic emission in 2D. By reducing the strength of the vortices and pushing them downstream and affecting the mechanics of the von K\u00E1rm\u00E1n instability (delaying the transition to unsteadiness), stretched shapes (with higher AR) are generally quieter. From the experiments, it is found that the geometries of biggest AR are the loudest, contraposing the results obtained in 2D. The disparity is justified by a significant increase of the spanwise coherence associated with the larger AR\'s, practically fully-phased, thus more acoustically efficient. Globally, it is implied that geometries which have weakly perturbed flow in 2D, marked by a later transition to unsteadiness (larger critical Reynolds number), are also more organized in 3D, high-Reynolds number regimes. The underlying relationship between low and high-Reynolds number transitions must be further investigated.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/10296388094<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Th\u00E8ses et \u00E9crits acad\u00E9miques<\/span>\" ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Modelling airframe noise : from aerodynamic topology to acoustic efficiency<\/span>\" ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1162818978<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/tel.archives-ouvertes.fr\/tel-02507094<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2019POIT2289\/document<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/theses.univ-poitiers.fr\/62456\/2019-Goncalves-Da-Silva-Pinto-Wagner-Jose-These<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1162818978<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/533.62\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/620.107\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/620.2\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/ecole_doctorale_sciences_et_ingenierie_des_materiaux_mecanique_energetique_poitiers<\/a>> # Ecole doctorale Sciences et Ing\u00E9nierie des Mat\u00E9riaux, M\u00E9canique, Energ\u00E9tique (Poitiers).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ecole doctorale Sciences et Ing\u00E9nierie des Mat\u00E9riaux, M\u00E9canique, Energ\u00E9tique (Poitiers).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/ecole_nationale_superieure_d_ingenieurs_poitiers<\/a>> # \u00C9cole nationale sup\u00E9rieure d\'ing\u00E9nieurs (Poitiers).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9cole nationale sup\u00E9rieure d\'ing\u00E9nieurs (Poitiers).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/pole_poitevin_de_recherche_pour_l_ingenieur_en_mecanique_materiaux_et_energetique_pprimme_poitiers<\/a>> # P\u00F4le poitevin de recherche pour l\'ing\u00E9nieur en m\u00E9canique, mat\u00E9riaux et \u00E9nerg\u00E9tique - PPRIMME (Poitiers).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"P\u00F4le poitevin de recherche pour l\'ing\u00E9nieur en m\u00E9canique, mat\u00E9riaux et \u00E9nerg\u00E9tique - PPRIMME (Poitiers).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Organization\/universite_de_poitiers<\/a>> # Universit\u00E9 de Poitiers.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Universit\u00E9 de Poitiers.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/fortune_veronique<\/a>> # V\u00E9ronique Fortun\u00E9<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Fortun\u00E9<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"V\u00E9ronique<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"V\u00E9ronique Fortun\u00E9<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/gervais_yves_acousticien<\/a>> # (acousticien). Yves Gervais<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Gervais<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Yves<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"(acousticien). Yves Gervais<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/goncalves_da_silva_pinto_wagner_jose_1992<\/a>> # Wagner Jos\u00E9 Gon\u00E7alves Da Silva Pinto<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1992<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Gon\u00E7alves Da Silva Pinto<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Wagner Jos\u00E9<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Wagner Jos\u00E9 Gon\u00E7alves Da Silva Pinto<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/jacob_marc_c_professeur<\/a>> # (professeur). Marc C. Jacob<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Jacob<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Marc C.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"(professeur). Marc C. Jacob<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/joseph_phillip<\/a>> # Phillip Joseph<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Joseph<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Phillip<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Phillip Joseph<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/kaltenbacher_manfred<\/a>> # Manfred Kaltenbacher<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Kaltenbacher<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Manfred<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Manfred Kaltenbacher<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/manoha_eric<\/a>> # Eric Manoha<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Manoha<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Eric<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Eric Manoha<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/margnat_florent_1980<\/a>> # Florent Margnat<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1980<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Margnat<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Florent<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Florent Margnat<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Person\/spohn_andreas<\/a>> # Andreas Spohn<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Spohn<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Andreas<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Andreas Spohn<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/bruit_de_cylindre<\/a>> # Bruit de cylindre<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Bruit de cylindre<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/coherence<\/a>> # Coh\u00E9rence<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Coh\u00E9rence<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/ecoulement_d_obstacle<\/a>> # \u00C9coulement d\'obstacle<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9coulement d\'obstacle<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/optimisation_de_forme<\/a>> # Optimisation de forme<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Optimisation de forme<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/sifflement_eolien<\/a>> # Sifflement \u00E9olien<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Sifflement \u00E9olien<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/sillage_de_von_karman<\/a>> # Sillage de Von Karman<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Sillage de Von Karman<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Thing\/simulation_numerique_directe<\/a>> # Simulation Num\u00E9rique Directe<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Simulation Num\u00E9rique Directe<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/aeroacoustique<\/a>> # A\u00E9roacoustique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"A\u00E9roacoustique<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/bruit_aerodynamique<\/a>> # Bruit a\u00E9rodynamique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Bruit a\u00E9rodynamique<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/ecoulement_instationnaire_dynamique_des_fluides<\/a>> # \u00C9coulement instationnaire (dynamique des fluides)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9coulement instationnaire (dynamique des fluides)<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/essais_en_soufflerie_aerodynamique<\/a>> # Essais en soufflerie a\u00E9rodynamique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Essais en soufflerie a\u00E9rodynamique<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/navier_stokes_equations_de_solutions_numeriques<\/a>> # Navier-Stokes, \u00C9quations de--Solutions num\u00E9riques<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Navier-Stokes, \u00C9quations de--Solutions num\u00E9riques<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/10296388094#Topic\/sillage_aerodynamique<\/a>> # Sillage (a\u00E9rodynamique)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Sillage (a\u00E9rodynamique)<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"fr<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.theses.fr\/2019POIT2289\/document<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Acc\u00E8s au texte int\u00E9gral<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n