skip to content
Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud Preview this item
ClosePreview this item
Checking...

Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud

Author: Manuel Amunategui; Mehdi Roopaei
Publisher: [New York] : Apress, [2018]
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book - Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Amunategui, Manuel.
Monetizing machine learning.
[New York] : Apress, [2018]
(OCoLC)1043880237
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Manuel Amunategui; Mehdi Roopaei
ISBN: 9781484238738 1484238737 9781484238745 1484238745
OCLC Number: 1052766455
Description: 1 online resource
Contents: Intro; Table of Contents; About the Authors; About the Technical Reviewers; Acknowledgments; Introduction; Chapter 1: Introduction to Serverless Technologies; A Simple Local Flask Application; Step 1: Basic "Hello World!" Example; Step 2: Start a Virtual Environment; Step 3: Install Flask; Step 4: Run Web Application; Step 5: View in Browser; Step 6: A Slightly Faster Way; Step 7: Closing It All Down; Introducing Serverless Hosting on Microsoft Azure; Step 1: Get an Account on Microsoft Azure; Step 2: Download Source Files; Supporting Files; Step 3: Install Git; Step 4: Open Azure Cloud Shell. Step 5: Create a Deployment UserStep 6: Create a Resource Group; Step 7: Create an Azure Service Plan; Step 8: Create a Web App; Check Your Website Placeholder; Step 9: Pushing Out the Web Application; Step 10: View in Browser; Step 11: Don't Forget to Delete Your Web Application!; Conclusion and Additional Information; Introducing Serverless Hosting on Google Cloud; Step 1: Get an Account on Google Cloud; Step 2: Download Source Files; Step 3: Open Google Cloud Shell; Step 4: Upload Flask Files to Google Cloud; Step 5: Deploy Your Web Application on Google Cloud. Step 6: Don't Forget to Delete Your Web Application!Conclusion and Additional Information; Introducing Serverless Hosting on Amazon AWS; Step 1: Get an Account on Amazon AWS; Step 2: Download Source Files; Step 3: Create an Access Account for Elastic Beanstalk; Step 4: Install Elastic Beanstalk (EB); Step 5: EB Command Line Interface; Step 6: Take if for a Spin; Step 7: Don't Forget to Turn It Off!; Conclusion and Additional Information; Introducing Hosting on PythonAnywhere; Step 1: Get an Account on PythonAnywhere; Step 2: Set Up Flask Web Framework; Conclusion and Additional Information. Creating Dummy Features from Categorical DataTrying a Nonlinear Model; Even More Complex Feature Engineering-Leveraging Time-Series; A Parsimonious Model; Extracting Regression Coefficients from a Simple Model-an Easy Way to Predict Demand without Server-Side Computing; R-Squared; Predicting on New Data Using Extracted Coefficients; Designing a Fun and Interactive Web Application to Illustrate Bike Rental Demand; Abstracting Code for Readability and Extendibility; Building a Local Flask Application; Downloading and Running the Bike Sharing GitHub Code Locally; Debugging Tips.
Responsibility: Manuel Amunategui, Mehdi Roopaei.

Abstract:

Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book - Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time. Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1052766455> # Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "1052766455" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'https://www.safaribooksonline.com/library/view/title/9781484238738/?ar?orpq&email=^u'" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/big_data> ; # Big Data
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/artificial_intelligence> ; # Artificial Intelligence
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/machine_learning_finance> ; # Machine learning--Finance
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/computer_algorithms> ; # Computer algorithms
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/computer_communication_networks> ; # Computer Communication Networks
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/python_computer_program_language> ; # Python (Computer program language)
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/network_hardware> ; # Network hardware
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/databases> ; # Databases
    schema:about <http://dewey.info/class/006.312/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/machine_learning> ; # Machine learning
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/program_concepts_learning_to_program> ; # Program concepts--learning to program
    schema:about <http://experiment.worldcat.org/entity/work/data/5443728405#Topic/computers_general> ; # COMPUTERS--General
    schema:author <http://experiment.worldcat.org/entity/work/data/5443728405#Person/amunategui_manuel> ; # Manuel Amunategui
    schema:author <http://experiment.worldcat.org/entity/work/data/5443728405#Person/roopaei_mehdi> ; # Mehdi Roopaei
    schema:bookFormat schema:EBook ;
    schema:datePublished "2018" ;
    schema:description "Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book - Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time. Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book."@en ;
    schema:description "Intro; Table of Contents; About the Authors; About the Technical Reviewers; Acknowledgments; Introduction; Chapter 1: Introduction to Serverless Technologies; A Simple Local Flask Application; Step 1: Basic "Hello World!" Example; Step 2: Start a Virtual Environment; Step 3: Install Flask; Step 4: Run Web Application; Step 5: View in Browser; Step 6: A Slightly Faster Way; Step 7: Closing It All Down; Introducing Serverless Hosting on Microsoft Azure; Step 1: Get an Account on Microsoft Azure; Step 2: Download Source Files; Supporting Files; Step 3: Install Git; Step 4: Open Azure Cloud Shell."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5443728405> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1043880237> ;
    schema:name "Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud"@en ;
    schema:productID "1052766455" ;
    schema:url <http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781484238738> ;
    schema:url <https://proxy.ufv.ca:2443/login?url=https://doi.org/10.1007/978-1-4842-3873-8> ;
    schema:url <https://0-link-springer-com.pugwash.lib.warwick.ac.uk/book/10.1007/978-1-4842-3873-8> ;
    schema:url "https://www.safaribooksonline.com/library/view/title/9781484238738/?ar?orpq&email=^u" ;
    schema:url <https://link.springer.com/10.1007/978-1-4842-3873-8> ;
    schema:url <http://proquest.safaribooksonline.com/?uiCode=stanford&xmlId=9781484238738> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=5516214> ;
    schema:url <https://ezproxy.lau.edu.lb:2443/login?url=https://doi.org/10.1007/978-1-4842-3873-8> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1893766> ;
    schema:url <http://link.springer.com/10.1007/978-1-4842-3873-8> ;
    schema:url <http://proquest.safaribooksonline.com/9781484238738> ;
    schema:url <https://doi.org/10.1007/978-1-4842-3873-8> ;
    schema:url <http://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1007/978-1-4842-3873-8> ;
    schema:url <https://ezproxy.aub.edu.lb/login?url=https://doi.org/10.1007/978-1-4842-3873-8> ;
    schema:url <https://nls.ldls.org.uk/welcome.html?ark:/81055/vdc_100066645039.0x000001> ;
    schema:url <http://uproxy.library.dc-uoit.ca/login?url=http://link.springer.com/10.1007/978-1-4842-3873-8> ;
    schema:url <http://proquestcombo.safaribooksonline.com/9781484238738> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4842-3873-8> ;
    schema:workExample <http://worldcat.org/isbn/9781484238738> ;
    schema:workExample <http://worldcat.org/isbn/9781484238745> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1052766455> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5443728405#Person/amunategui_manuel> # Manuel Amunategui
    a schema:Person ;
    schema:familyName "Amunategui" ;
    schema:givenName "Manuel" ;
    schema:name "Manuel Amunategui" ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Person/roopaei_mehdi> # Mehdi Roopaei
    a schema:Person ;
    schema:familyName "Roopaei" ;
    schema:givenName "Mehdi" ;
    schema:name "Mehdi Roopaei" ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/artificial_intelligence> # Artificial Intelligence
    a schema:Intangible ;
    schema:name "Artificial Intelligence"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/computer_algorithms> # Computer algorithms
    a schema:Intangible ;
    schema:name "Computer algorithms"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/computer_communication_networks> # Computer Communication Networks
    a schema:Intangible ;
    schema:name "Computer Communication Networks"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/computers_general> # COMPUTERS--General
    a schema:Intangible ;
    schema:name "COMPUTERS--General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/machine_learning_finance> # Machine learning--Finance
    a schema:Intangible ;
    schema:name "Machine learning--Finance"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/program_concepts_learning_to_program> # Program concepts--learning to program
    a schema:Intangible ;
    schema:name "Program concepts--learning to program"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5443728405#Topic/python_computer_program_language> # Python (Computer program language)
    a schema:Intangible ;
    schema:name "Python (Computer program language)"@en ;
    .

<http://proquest.safaribooksonline.com/?uiCode=stanford&xmlId=9781484238738>
    rdfs:comment "Available to Stanford-affiliated users." ;
    .

<http://uproxy.library.dc-uoit.ca/login?url=http://link.springer.com/10.1007/978-1-4842-3873-8>
    rdfs:comment "eBook available for UOIT via SpringerLink. Click link to access" ;
    .

<http://worldcat.org/isbn/9781484238738>
    a schema:ProductModel ;
    schema:isbn "1484238737" ;
    schema:isbn "9781484238738" ;
    .

<http://worldcat.org/isbn/9781484238745>
    a schema:ProductModel ;
    schema:isbn "1484238745" ;
    schema:isbn "9781484238745" ;
    .

<http://www.worldcat.org/oclc/1043880237>
    a schema:CreativeWork ;
    rdfs:label "Monetizing machine learning." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1052766455> ; # Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud
    .

<http://www.worldcat.org/title/-/oclc/1052766455>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1052766455> ; # Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud
    schema:dateModified "2019-10-13" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.