skip to content
Nanocomposites with biodegradable polymers : synthesis, properties, and future perspectives Preview this item
ClosePreview this item
Checking...

Nanocomposites with biodegradable polymers : synthesis, properties, and future perspectives

Author: Vikas Mittal
Publisher: Oxford ; New York : Oxford University Press, 2011.
Series: Monographs on the physics and chemistry of materials.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
Bio-nanocomposites combine the enhanced properties of commercial polymer nanocomposites with the low environmental impact of biodegradable material, making them a topic of great current interest. Because of their tremendous role in reducing dependency on commercial non-biodegradable polymers, and their environmentally-friendly nature, bio-nanocomposites need to be studied in greater detail. In this book, recent  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Vikas Mittal
ISBN: 9780199581924 0199581924
OCLC Number: 687700909
Description: xvii, 426 pages : illustrations ; 26 cm.
Contents: Machine generated contents note: 1.Bio-nanocomposites: future high-value materials / Vikas Mittal --
1.1.Introduction to polymer nanocomposites --
1.2.Biopolymers or biodegradable polymers --
1.3.Bio-nanocomposites --
1.4.References --
2.Biodegradation of polymeric systems / Shogo Uematsu --
2.1.Biodegradable polymers and their composites --
2.1.1.Mechanisms of biodegradation --
2.1.2.Biodegradation of PLA and its nanocomposites --
2.1.3.Biodegradation of PBS and its composites --
2.1.4.Biodegradation of PCL --
2.1.5.Biodegradation of PHB --
2.2.Biodegradation tests under controlled composting conditions --
2.2.1.Introduction --
2.2.2.Test method for biodegradation of plastics under controlled composting conditions --
2.2.3.Specifications of ISO 14855 --
1 and ISO 14855 --
2 --
2.2.4.Preparation of mature compost --
2.2.5.pH of compost --
2.2.6.Water activity (Aw) --
2.2.7.Test equipment --
2.2.8.Biodegradation of test materials --
2.2.9.Conclusion --
2.3.Acknowledgements Note continued: 2.4.References --
3.Biodegradable thermoplastic starch/poly(vinyl alcohol) nanocomposites with layered silicates / Long Yu --
3.1.Introduction --
3.2.Materials and processing of thermoplastic starch/PVOH nanocomposites --
3.3.Microstructure and chemistry of the thermoplastic starch/PVOH nanocomposites --
3.3.1.XRD analysis of the structures --
3.3.2.TEM analysis of the structures --
3.3.3.Fourier transform infrared spectroscopy (FTIR) analysis of the structures --
3.4.Mechanical properties of the thermoplastic starch/PVOH nanocomposites --
3.5.Conclusions --
3.6.Acknowledgements --
3.7.References --
4.Bio-nanocomposites with non-cellulosic biofillers / Ning Lin --
4.1.Introduction --
4.2.Manufacture of non-cellulosic nano-sized biofiller --
4.2.1.Extraction of starch nanocrystal --
4.2.2.Extraction of chitin nanowhisker --
4.2.3.Organization of supramolecular lignin complex --
4.2.4.Artificial nano-sized filler from biomass Note continued: 4.3.Chemical modification of non-cellulosic biofiller --
4.3.1.Chemical derivation of non-cellulosic biofiller --
4.3.2.`Graft to' modification of non-cellulosic biofiller --
4.3.3.`Graft from' modification of non-cellulosic biofiller --
4.4.Processing of bio-nanocomposites with non-cellulosic biofiller --
4.4.1.Solution blending and subsequent moulding of bio-nanocomposites --
4.4.2.Compounding of nano-sized biofiller with reactive polymer matrix --
4.4.3.Post-treatment of moulded bio-nanocomposites --
4.4.4.Manufacturing of structural bio-nanocomposite materials --
4.4.5.Thermoforming of polymer-grafted polysaccharide nanocrystals --
4.4.6.Direct nanoscaffold formation from chitin whiskers --
4.5.Mechanical properties of bio-nanocomposites with non-cellulosic biofiller --
4.5.1.Effects of structure and loading level of biofiller --
4.5.2.Effects of chemical modification of biofillers --
4.5.3.Effects of processing conditions Note continued: 4.5.4.Reinforcement mechanism of biofiller --
4.6.Other properties of bio-nanocomposites with non-cellulosic biofiller --
4.6.1.Thermal properties of bio-nanocomposites --
4.6.2.Swelling behaviour of bio-nanocomposites --
4.6.3.Barrier properties of bio-nanocomposites --
4.7.Conclusion and prospects --
4.8.References --
5.Biodegradable poly(butylene succinate)/multi-walled carbon nanotube nanocomposites / R. J. Jeng --
5.1.Introduction --
5.1.1.Biodegradable poly(butyiene succinate) --
5.1.2.Carbon nanotubes --
5.1.3.Modifications of carbon nanotubes --
5.1.4.Biodegradable polymer/CNTs composites --
5.1.5.Thermal degradation kinetics of PBS/CNTs composites --
5.2.Experimental --
5.2.1.Materials --
5.2.2.Instruments --
5.3.Results and discussion --
5.3.1.Characterization of the organically grafted CNTs --
5.3.2.DSC analysis of the PBS/CNTs nanocomposites --
5.3.3.Mechanical properties of the PBS/CNTs nanocomposites Note continued: 5.3.4.Electrical properties of the PBS/CNTs nanocomposites --
5.3.5.Morphology of PBS/CNTs nanocomposites --
5.3.6.Thermal degradation kinetics of PBS/CNTs nanocomposites --
5.4.Conclusion --
5.5.References --
6.Biodegradable nanocomposites from cellulosic plastics and cellulosic fibre / Amar Mohanty --
6.1.Introduction to nanocomposites and biodegradable materials --
6.2.Biobased and biodegradable materials --
6.3.The importance of plant materials --
6.4.Cellulosic plastics --
6.4.1.Cellulose esters --
6.4.2.Chitin --
6.4.3.Chitosan --
6.5.Cellulosic fibres (micron and nanoscale) --
6.5.1.Cellulose nanowhiskers --
6.5.2.Microfibrillated cellulose --
6.5.3.Bacterial cellulose --
6.6.Processing cellulose nanocomposites --
6.7.Characterization of cellulose nanocomposites --
6.8.Future perspectives --
6.9.Concluding remarks --
6.10.Acknowledgements --
6.11.References --
7.Silica/alginate bio-nanocomposites / Thibaud Coradin --
7.1.Introduction Note continued: 7.2.Alginate-based materials --
7.3.Design of silica/alginate biocomposites --
7.3.1.The composite approach --
7.3.2.The hybrid approach --
7.3.3.The IPN approach --
7.3.4.Scaling down of the procedures --
7.4.Physical and chemical properties of silica/alginate nanocomposites --
7.4.1.Mechanical and thermal stability --
7.4.2.Chemical stability --
7.5.Applications --
7.5.1.Enzymatic biocatalysts --
7.5.2.Cell-based bioreactors --
7.5.3.Artificial organs --
7.5.4.Drug delivery systems --
7.6.Extensions and perspectives --
7.6.1.Other alginate-based bio-nanocomposites --
7.6.2.Bases for further partnership --
7.7.References --
8.Bio-based elastomers from soy oil and nanoclay / Richard P. Wool --
8.1.Introduction --
8.2.Experimental --
8.2.1.Preparation of clay/elastomer elastomer hybrid --
8.2.2.Characterization --
8.3.Results and discussion --
8.3.1.Organic modifier selection --
8.3.2.Morphology --
8.3.3.Mechanical properties Note continued: 8.3.4.Crosslink density and network perfection --
8.3.5.Thermal stability and glass transition temperature --
8.3.6.Biodegradability --
8.3.7.Biocompatibility --
8.4.Conclusions --
8.5.References --
9.Gelatine-based bio-nanocomposites / Eduardo Ruiz-Hitzky --
9.1.Introduction --
9.2.Gelatine composite materials --
9.2.1.Gelatine, from the kitchen to the operating table --
9.2.2.Gelatine, between collagen and synthetic polymers --
9.2.3.Structural gelatine composites --
9.2.4.Functional gelatine composites --
9.3.Silica and silicate-based gelatine nanocomposites --
9.3.1.Silica-based gelatine nanocomposites --
9.3.2.Layered silicate-based nanocomposites --
9.3.3.Fibrous silicate-based nanocomposites --
9.4.Gelatine nanocomposites based on other inorganic solids --
9.5.Gelatine in three-component nanocomposite systems --
9.6.Future perspectives --
9.7.Acknowledgements --
9.8.References --
10.Bio-nanocomposites based on starch / Luc Averous Note continued: 10.1.Introduction --
10.2.Processing techniques --
10.2.1.Solution intercalation --
10.2.2.Melt intercalation --
10.3.Starch-based bio-nanocomposites --
10.3.1.Starch bio-nanocomposites filled by layered clays --
10.3.2.Starch bio-nanocomposites filled by whiskers --
10.3.3.Starch bio-nanocomposites filled by starch nanocrystals --
10.3.4.Starch bio-nanocomposites filled by other types of nanofillers --
10.4.Bio-nanocomposites based on other starch-based matrices --
10.5.Applications --
10.6.Summary --
10.7.References --
11.Soy protein-based polymer nanocomposites / Jiahui Yu --
11.1.Introduction --
11.2.Soy protein-based nanocomposites filled with inorganic nanofillers --
11.2.1.Soy protein nanocomposites filled with layered silicates --
11.2.2.Soy protein nanocomposites filled with spherical SiO2 nanoparticles --
11.2.3.Soy protein nanocomposites filled with carbon nanotube Note continued: 11.2.4.In situ synthesis of soy protein/inorganic nanocrystal nanocomposites --
11.3.Soy protein-based composites filled with organic nanofillers --
11.3.1.Soy protein filled with polysaccharide nanocrystals --
11.3.2.Soy protein filled with artificial nanoparticles --
11.3.3.Soy protein filled with self-assembled nanoparticles --
11.3.4.Soy protein filled with lignin nanophase --
11.4.Structure --
property relationship of soy protein-based nanocomposites --
11.4.1.Interfacial interaction between nanofillers and soy protein matrix --
11.4.2.Entanglement and penetration of polymer matrix with hollow nanoparticles --
11.4.3.Self-organization organization of nanofillers in soy protein matrix --
11.4.4.Co-continuous phase mediated with polymer chains on nanoparticles --
11.4.5.In situ formed nanostructure in soy protein matrix --
11.5.Conclusion and prospects --
11.6.References Note continued: 12.Biodegradable nanocomposites based on poly(hydroxyalkanoates) / Pralay Maiti --
12.1.Introduction --
12.2.Preparation of poly(hydroxyalkanoate) nanocomposites --
12.2.1.Solution casting method --
12.2.2.Melt extrusion technique --
12.2.3.In situ polymerization --
12.3.Characterization of poly(hydroxyalkanoate) nanocomposites --
12.3.1.Nanostructure --
12.3.2.Microstructure --
12.4.Properties --
12.4.1.Mechanical properties --
12.4.2.Thermal properties --
12.4.3.Gas barrier properties --
12.4.4.Biodegradation --
12.5.Processing --
12.5.1.Melt rheology and structure --
property relationship --
12.6.Uses --
12.7.Conclusion --
12.8.Acknowledgements --
12.9.References --
13.Bio-nanocomposites using bio-based epoxy resins / Mitsuhiro Shibata --
13.1.Introduction --
13.2.Bio-based epoxy resin/montmorillonite nanocomposites --
13.2.1.Layered silicates as fillers of bio-nanocomposites --
13.2.2.Preparation and morphology of PGPE-PL/MMT nanocomposites Note continued: 13.2.3.Properties of PGPE-PL/MMT composites --
13.3.Bio-based epoxy resin/microfibrillated cellulose nanocomposites --
13.3.1.Microfibrillated cellulose as reinforcing fibres of bio-nanocomposites --
13.3.2.Preparation of GPE/TA/MFC and SPE/TA/MFC --
13.3.3.Properties of GPE-TA/MFC and SPE-TA/MFC --
13.4.Bio-based epoxy resin/self-assembled hydroxystearic acid nanocomposites --
13.4.1.Self-assembled suplamolecular fibres as reinforcing fibres of bio-nanocomposites --
13.4.2.Preparation and characterization of photo-cured ESO/HSA nanocomposites --
13.4.3.Mechanical properties of photo-cured ESO/HSA nanocomposites --
13.5.References --
14.Bio-nanocomposites for food packaging applications / Caisa Johansson --
14.1.Background --
14.2.Food packaging requirements --
14.2.1.Paper-based packaging laminates --
14.2.2.Self-supporting packaging material --
14.3.Industrial manufacture of bio-nanocomposite food packaging --
14.4.Bio-nanocomposites Note continued: 14.4.1.Nanosized components in bio-nanocomposites --
14.4.2.Poly(lactic acid)-based nanocomposites --
14.4.3.Polycaprolactone-based nanocomposites --
14.4.4.Polyhydroxyalkanoate-based nanocomposites --
14.4.5.Starch-based nanocomposites --
14.4.6.Chitosan-based nanocomposites --
14.4.7.Other classes of bio-nanocomposites --
14.5.Costs and commercial availability of bio-nanocomposite components --
14.6.Potential risks related to bio-nanocomposites in food packaging --
14.6.1.Contamination and migration --
14.7.Antimicrobial functionality in bio-nanocomposites --
14.8.Environmental aspects of bio-nanocomposites --
14.9.References --
15.Conductive biopolymer nanocomposites for sensors / Mickael Castro --
15.1.Introduction --
15.2.Conductive biopolymer nanocomposite (CPC) transducer development --
15.2.1.Choice and association of materials for conductive biopolymer composite development --
15.2.2.Conductive biopolymer nanocomposite architecture design Note continued: 15.2.3.Conductive biopolymer nanocomposite transducer characterization --
15.2.4.Instrumentation and tests --
15.2.5.Principle of conductive biopolymer nanocomposite resistive sensors --
15.2.6.Properties of conductive biopolymer nanocomposite resistive transducers --
15.2.7.Principle of conductive biopolymer nanocomposite electrochemical biosensors --
15.2.8.Applications --
15.3.Conclusion --
15.4.References --
16.Commercial aspects associated with bio-nanocomposites / R. P. Singh --
16.1.Introduction --
16.2.Classification of bio-nanocomposites --
16.2.1.Nanocomposites of biodegradable polymers --
16.3.Commercial preparation, processing and challenges --
16.3.1.Method of preparation --
16.3.2.Compounding of bio-nanocomposites --
16.3.3.Thermosetting methods --
16.3.4.Scale-up/challenges --
16.3.5.Methods for improving the properties --
16.4.Energy consumption --
16.5.Commercial aspects of bio-nanocomposites: the importance --
16.6.Future perspectives Note continued: 16.7.Summary/conclusions --
16.8.References.
Series Title: Monographs on the physics and chemistry of materials.
Responsibility: edited by Vikas Mittal.

Abstract:

Polymers are used in practically every facet of daily life. Most polymers come from fossil fuels and are not biodegradable, causing long-term environmental hazards. Biodegradable polymers provide an  Read more...

Reviews

Editorial reviews

Publisher Synopsis

This book covers an important class of materials, which currently attract much interest in academic and industrial research labs around the world and hold great promises for technological Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(5)

User lists with this item (2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/687700909> # Nanocomposites with biodegradable polymers : synthesis, properties, and future perspectives
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "687700909" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/761559127#Place/oxford> ; # Oxford
    schema:about <http://experiment.worldcat.org/entity/work/data/761559127#Topic/biopolymere> ; # Biopolymere
    schema:about <http://id.worldcat.org/fast/1748679> ; # Nanocomposites (Materials)
    schema:about <http://id.worldcat.org/fast/1070595> ; # Polymers--Biodegradation
    schema:about <http://experiment.worldcat.org/entity/work/data/761559127#Topic/polymere> ; # Polymere
    schema:about <http://id.loc.gov/authorities/subjects/sh86003769> ; # Polymers--Biodegradation
    schema:about <http://dewey.info/class/620.192/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/761559127#Topic/nanokomposit> ; # Nanokomposit
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/90452609> ; # Vikas Mittal
    schema:datePublished "2011" ;
    schema:description "Note continued: 5.3.4.Electrical properties of the PBS/CNTs nanocomposites -- 5.3.5.Morphology of PBS/CNTs nanocomposites -- 5.3.6.Thermal degradation kinetics of PBS/CNTs nanocomposites -- 5.4.Conclusion -- 5.5.References -- 6.Biodegradable nanocomposites from cellulosic plastics and cellulosic fibre / Amar Mohanty -- 6.1.Introduction to nanocomposites and biodegradable materials -- 6.2.Biobased and biodegradable materials -- 6.3.The importance of plant materials -- 6.4.Cellulosic plastics -- 6.4.1.Cellulose esters -- 6.4.2.Chitin -- 6.4.3.Chitosan -- 6.5.Cellulosic fibres (micron and nanoscale) -- 6.5.1.Cellulose nanowhiskers -- 6.5.2.Microfibrillated cellulose -- 6.5.3.Bacterial cellulose -- 6.6.Processing cellulose nanocomposites -- 6.7.Characterization of cellulose nanocomposites -- 6.8.Future perspectives -- 6.9.Concluding remarks -- 6.10.Acknowledgements -- 6.11.References -- 7.Silica/alginate bio-nanocomposites / Thibaud Coradin -- 7.1.Introduction"@en ;
    schema:description "Note continued: 4.5.4.Reinforcement mechanism of biofiller -- 4.6.Other properties of bio-nanocomposites with non-cellulosic biofiller -- 4.6.1.Thermal properties of bio-nanocomposites -- 4.6.2.Swelling behaviour of bio-nanocomposites -- 4.6.3.Barrier properties of bio-nanocomposites -- 4.7.Conclusion and prospects -- 4.8.References -- 5.Biodegradable poly(butylene succinate)/multi-walled carbon nanotube nanocomposites / R. J. Jeng -- 5.1.Introduction -- 5.1.1.Biodegradable poly(butyiene succinate) -- 5.1.2.Carbon nanotubes -- 5.1.3.Modifications of carbon nanotubes -- 5.1.4.Biodegradable polymer/CNTs composites -- 5.1.5.Thermal degradation kinetics of PBS/CNTs composites -- 5.2.Experimental -- 5.2.1.Materials -- 5.2.2.Instruments -- 5.3.Results and discussion -- 5.3.1.Characterization of the organically grafted CNTs -- 5.3.2.DSC analysis of the PBS/CNTs nanocomposites -- 5.3.3.Mechanical properties of the PBS/CNTs nanocomposites"@en ;
    schema:description "Note continued: 8.3.4.Crosslink density and network perfection -- 8.3.5.Thermal stability and glass transition temperature -- 8.3.6.Biodegradability -- 8.3.7.Biocompatibility -- 8.4.Conclusions -- 8.5.References -- 9.Gelatine-based bio-nanocomposites / Eduardo Ruiz-Hitzky -- 9.1.Introduction -- 9.2.Gelatine composite materials -- 9.2.1.Gelatine, from the kitchen to the operating table -- 9.2.2.Gelatine, between collagen and synthetic polymers -- 9.2.3.Structural gelatine composites -- 9.2.4.Functional gelatine composites -- 9.3.Silica and silicate-based gelatine nanocomposites -- 9.3.1.Silica-based gelatine nanocomposites -- 9.3.2.Layered silicate-based nanocomposites -- 9.3.3.Fibrous silicate-based nanocomposites -- 9.4.Gelatine nanocomposites based on other inorganic solids -- 9.5.Gelatine in three-component nanocomposite systems -- 9.6.Future perspectives -- 9.7.Acknowledgements -- 9.8.References -- 10.Bio-nanocomposites based on starch / Luc Averous"@en ;
    schema:description "Machine generated contents note: 1.Bio-nanocomposites: future high-value materials / Vikas Mittal -- 1.1.Introduction to polymer nanocomposites -- 1.2.Biopolymers or biodegradable polymers -- 1.3.Bio-nanocomposites -- 1.4.References -- 2.Biodegradation of polymeric systems / Shogo Uematsu -- 2.1.Biodegradable polymers and their composites -- 2.1.1.Mechanisms of biodegradation -- 2.1.2.Biodegradation of PLA and its nanocomposites -- 2.1.3.Biodegradation of PBS and its composites -- 2.1.4.Biodegradation of PCL -- 2.1.5.Biodegradation of PHB -- 2.2.Biodegradation tests under controlled composting conditions -- 2.2.1.Introduction -- 2.2.2.Test method for biodegradation of plastics under controlled composting conditions -- 2.2.3.Specifications of ISO 14855 -- 1 and ISO 14855 -- 2 -- 2.2.4.Preparation of mature compost -- 2.2.5.pH of compost -- 2.2.6.Water activity (Aw) -- 2.2.7.Test equipment -- 2.2.8.Biodegradation of test materials -- 2.2.9.Conclusion -- 2.3.Acknowledgements"@en ;
    schema:description "Note continued: 14.4.1.Nanosized components in bio-nanocomposites -- 14.4.2.Poly(lactic acid)-based nanocomposites -- 14.4.3.Polycaprolactone-based nanocomposites -- 14.4.4.Polyhydroxyalkanoate-based nanocomposites -- 14.4.5.Starch-based nanocomposites -- 14.4.6.Chitosan-based nanocomposites -- 14.4.7.Other classes of bio-nanocomposites -- 14.5.Costs and commercial availability of bio-nanocomposite components -- 14.6.Potential risks related to bio-nanocomposites in food packaging -- 14.6.1.Contamination and migration -- 14.7.Antimicrobial functionality in bio-nanocomposites -- 14.8.Environmental aspects of bio-nanocomposites -- 14.9.References -- 15.Conductive biopolymer nanocomposites for sensors / Mickael Castro -- 15.1.Introduction -- 15.2.Conductive biopolymer nanocomposite (CPC) transducer development -- 15.2.1.Choice and association of materials for conductive biopolymer composite development -- 15.2.2.Conductive biopolymer nanocomposite architecture design"@en ;
    schema:description "Note continued: 10.1.Introduction -- 10.2.Processing techniques -- 10.2.1.Solution intercalation -- 10.2.2.Melt intercalation -- 10.3.Starch-based bio-nanocomposites -- 10.3.1.Starch bio-nanocomposites filled by layered clays -- 10.3.2.Starch bio-nanocomposites filled by whiskers -- 10.3.3.Starch bio-nanocomposites filled by starch nanocrystals -- 10.3.4.Starch bio-nanocomposites filled by other types of nanofillers -- 10.4.Bio-nanocomposites based on other starch-based matrices -- 10.5.Applications -- 10.6.Summary -- 10.7.References -- 11.Soy protein-based polymer nanocomposites / Jiahui Yu -- 11.1.Introduction -- 11.2.Soy protein-based nanocomposites filled with inorganic nanofillers -- 11.2.1.Soy protein nanocomposites filled with layered silicates -- 11.2.2.Soy protein nanocomposites filled with spherical SiO2 nanoparticles -- 11.2.3.Soy protein nanocomposites filled with carbon nanotube"@en ;
    schema:description "Bio-nanocomposites combine the enhanced properties of commercial polymer nanocomposites with the low environmental impact of biodegradable material, making them a topic of great current interest. Because of their tremendous role in reducing dependency on commercial non-biodegradable polymers, and their environmentally-friendly nature, bio-nanocomposites need to be studied in greater detail. In this book, recent advancements in their development are brought together in a single text, to provide researchers with a thorough insight into the various systems, and to open up future perspectives. Although the commercial applications of these bio-nanocomposites are in their infancy, these materials have a huge commercial potential. In setting out the next generation of advances in nanocomposite technology, this book opens the way for further developments in the field. Describing the subject as a whole, from a basic introduction to the more specific systems and advancements, this book can be used both as a professional reference and for teaching purposes. -- Book Description."@en ;
    schema:description "Note continued: 7.2.Alginate-based materials -- 7.3.Design of silica/alginate biocomposites -- 7.3.1.The composite approach -- 7.3.2.The hybrid approach -- 7.3.3.The IPN approach -- 7.3.4.Scaling down of the procedures -- 7.4.Physical and chemical properties of silica/alginate nanocomposites -- 7.4.1.Mechanical and thermal stability -- 7.4.2.Chemical stability -- 7.5.Applications -- 7.5.1.Enzymatic biocatalysts -- 7.5.2.Cell-based bioreactors -- 7.5.3.Artificial organs -- 7.5.4.Drug delivery systems -- 7.6.Extensions and perspectives -- 7.6.1.Other alginate-based bio-nanocomposites -- 7.6.2.Bases for further partnership -- 7.7.References -- 8.Bio-based elastomers from soy oil and nanoclay / Richard P. Wool -- 8.1.Introduction -- 8.2.Experimental -- 8.2.1.Preparation of clay/elastomer elastomer hybrid -- 8.2.2.Characterization -- 8.3.Results and discussion -- 8.3.1.Organic modifier selection -- 8.3.2.Morphology -- 8.3.3.Mechanical properties"@en ;
    schema:description "Note continued: 15.2.3.Conductive biopolymer nanocomposite transducer characterization -- 15.2.4.Instrumentation and tests -- 15.2.5.Principle of conductive biopolymer nanocomposite resistive sensors -- 15.2.6.Properties of conductive biopolymer nanocomposite resistive transducers -- 15.2.7.Principle of conductive biopolymer nanocomposite electrochemical biosensors -- 15.2.8.Applications -- 15.3.Conclusion -- 15.4.References -- 16.Commercial aspects associated with bio-nanocomposites / R. P. Singh -- 16.1.Introduction -- 16.2.Classification of bio-nanocomposites -- 16.2.1.Nanocomposites of biodegradable polymers -- 16.3.Commercial preparation, processing and challenges -- 16.3.1.Method of preparation -- 16.3.2.Compounding of bio-nanocomposites -- 16.3.3.Thermosetting methods -- 16.3.4.Scale-up/challenges -- 16.3.5.Methods for improving the properties -- 16.4.Energy consumption -- 16.5.Commercial aspects of bio-nanocomposites: the importance -- 16.6.Future perspectives"@en ;
    schema:description "Note continued: 13.2.3.Properties of PGPE-PL/MMT composites -- 13.3.Bio-based epoxy resin/microfibrillated cellulose nanocomposites -- 13.3.1.Microfibrillated cellulose as reinforcing fibres of bio-nanocomposites -- 13.3.2.Preparation of GPE/TA/MFC and SPE/TA/MFC -- 13.3.3.Properties of GPE-TA/MFC and SPE-TA/MFC -- 13.4.Bio-based epoxy resin/self-assembled hydroxystearic acid nanocomposites -- 13.4.1.Self-assembled suplamolecular fibres as reinforcing fibres of bio-nanocomposites -- 13.4.2.Preparation and characterization of photo-cured ESO/HSA nanocomposites -- 13.4.3.Mechanical properties of photo-cured ESO/HSA nanocomposites -- 13.5.References -- 14.Bio-nanocomposites for food packaging applications / Caisa Johansson -- 14.1.Background -- 14.2.Food packaging requirements -- 14.2.1.Paper-based packaging laminates -- 14.2.2.Self-supporting packaging material -- 14.3.Industrial manufacture of bio-nanocomposite food packaging -- 14.4.Bio-nanocomposites"@en ;
    schema:description "Note continued: 12.Biodegradable nanocomposites based on poly(hydroxyalkanoates) / Pralay Maiti -- 12.1.Introduction -- 12.2.Preparation of poly(hydroxyalkanoate) nanocomposites -- 12.2.1.Solution casting method -- 12.2.2.Melt extrusion technique -- 12.2.3.In situ polymerization -- 12.3.Characterization of poly(hydroxyalkanoate) nanocomposites -- 12.3.1.Nanostructure -- 12.3.2.Microstructure -- 12.4.Properties -- 12.4.1.Mechanical properties -- 12.4.2.Thermal properties -- 12.4.3.Gas barrier properties -- 12.4.4.Biodegradation -- 12.5.Processing -- 12.5.1.Melt rheology and structure -- property relationship -- 12.6.Uses -- 12.7.Conclusion -- 12.8.Acknowledgements -- 12.9.References -- 13.Bio-nanocomposites using bio-based epoxy resins / Mitsuhiro Shibata -- 13.1.Introduction -- 13.2.Bio-based epoxy resin/montmorillonite nanocomposites -- 13.2.1.Layered silicates as fillers of bio-nanocomposites -- 13.2.2.Preparation and morphology of PGPE-PL/MMT nanocomposites"@en ;
    schema:description "Note continued: 11.2.4.In situ synthesis of soy protein/inorganic nanocrystal nanocomposites -- 11.3.Soy protein-based composites filled with organic nanofillers -- 11.3.1.Soy protein filled with polysaccharide nanocrystals -- 11.3.2.Soy protein filled with artificial nanoparticles -- 11.3.3.Soy protein filled with self-assembled nanoparticles -- 11.3.4.Soy protein filled with lignin nanophase -- 11.4.Structure -- property relationship of soy protein-based nanocomposites -- 11.4.1.Interfacial interaction between nanofillers and soy protein matrix -- 11.4.2.Entanglement and penetration of polymer matrix with hollow nanoparticles -- 11.4.3.Self-organization organization of nanofillers in soy protein matrix -- 11.4.4.Co-continuous phase mediated with polymer chains on nanoparticles -- 11.4.5.In situ formed nanostructure in soy protein matrix -- 11.5.Conclusion and prospects -- 11.6.References"@en ;
    schema:description "Note continued: 2.4.References -- 3.Biodegradable thermoplastic starch/poly(vinyl alcohol) nanocomposites with layered silicates / Long Yu -- 3.1.Introduction -- 3.2.Materials and processing of thermoplastic starch/PVOH nanocomposites -- 3.3.Microstructure and chemistry of the thermoplastic starch/PVOH nanocomposites -- 3.3.1.XRD analysis of the structures -- 3.3.2.TEM analysis of the structures -- 3.3.3.Fourier transform infrared spectroscopy (FTIR) analysis of the structures -- 3.4.Mechanical properties of the thermoplastic starch/PVOH nanocomposites -- 3.5.Conclusions -- 3.6.Acknowledgements -- 3.7.References -- 4.Bio-nanocomposites with non-cellulosic biofillers / Ning Lin -- 4.1.Introduction -- 4.2.Manufacture of non-cellulosic nano-sized biofiller -- 4.2.1.Extraction of starch nanocrystal -- 4.2.2.Extraction of chitin nanowhisker -- 4.2.3.Organization of supramolecular lignin complex -- 4.2.4.Artificial nano-sized filler from biomass"@en ;
    schema:description "Note continued: 4.3.Chemical modification of non-cellulosic biofiller -- 4.3.1.Chemical derivation of non-cellulosic biofiller -- 4.3.2.`Graft to' modification of non-cellulosic biofiller -- 4.3.3.`Graft from' modification of non-cellulosic biofiller -- 4.4.Processing of bio-nanocomposites with non-cellulosic biofiller -- 4.4.1.Solution blending and subsequent moulding of bio-nanocomposites -- 4.4.2.Compounding of nano-sized biofiller with reactive polymer matrix -- 4.4.3.Post-treatment of moulded bio-nanocomposites -- 4.4.4.Manufacturing of structural bio-nanocomposite materials -- 4.4.5.Thermoforming of polymer-grafted polysaccharide nanocrystals -- 4.4.6.Direct nanoscaffold formation from chitin whiskers -- 4.5.Mechanical properties of bio-nanocomposites with non-cellulosic biofiller -- 4.5.1.Effects of structure and loading level of biofiller -- 4.5.2.Effects of chemical modification of biofillers -- 4.5.3.Effects of processing conditions"@en ;
    schema:description "Note continued: 16.7.Summary/conclusions -- 16.8.References."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/761559127> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/761559127#Series/monographs_on_the_physics_and_chemistry_of_materials> ; # Monographs on the physics and chemistry of materials.
    schema:name "Nanocomposites with biodegradable polymers : synthesis, properties, and future perspectives"@en ;
    schema:productID "687700909" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/687700909#PublicationEvent/oxford_new_york_oxford_university_press_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/761559127#Agent/oxford_university_press> ; # Oxford University Press
    schema:url <http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024669956&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA> ;
    schema:url <http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=024669956&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA> ;
    schema:workExample <http://worldcat.org/isbn/9780199581924> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB0D5777> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/687700909> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/761559127#Agent/oxford_university_press> # Oxford University Press
    a bgn:Agent ;
    schema:name "Oxford University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/761559127#Series/monographs_on_the_physics_and_chemistry_of_materials> # Monographs on the physics and chemistry of materials.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/687700909> ; # Nanocomposites with biodegradable polymers : synthesis, properties, and future perspectives
    schema:name "Monographs on the physics and chemistry of materials." ;
    schema:name "Monographs on the physics and chemistry of materials" ;
    .

<http://id.loc.gov/authorities/subjects/sh86003769> # Polymers--Biodegradation
    a schema:Intangible ;
    schema:name "Polymers--Biodegradation"@en ;
    .

<http://id.worldcat.org/fast/1070595> # Polymers--Biodegradation
    a schema:Intangible ;
    schema:name "Polymers--Biodegradation"@en ;
    .

<http://id.worldcat.org/fast/1748679> # Nanocomposites (Materials)
    a schema:Intangible ;
    schema:name "Nanocomposites (Materials)"@en ;
    .

<http://viaf.org/viaf/90452609> # Vikas Mittal
    a schema:Person ;
    schema:familyName "Mittal" ;
    schema:givenName "Vikas" ;
    schema:name "Vikas Mittal" ;
    .

<http://worldcat.org/isbn/9780199581924>
    a schema:ProductModel ;
    schema:isbn "0199581924" ;
    schema:isbn "9780199581924" ;
    .

<http://www.worldcat.org/title/-/oclc/687700909>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/687700909> ; # Nanocomposites with biodegradable polymers : synthesis, properties, and future perspectives
    schema:dateModified "2018-12-15" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.