skip to content
The new book of prime number records Preview this item
ClosePreview this item
Checking...

The new book of prime number records

Author: Paulo Ribenboim
Publisher: New York Berlin Heidelberg Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Springer 1996
Edition/Format:   Print book : German
Summary:

"Yes, Morris, I'm from Brazil, but my book will contain numbers different from *one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Paulo Ribenboim
ISBN: 0387944575 9780387944579
OCLC Number: 722115622
Notes: Literaturverz. S. 433 - 507
Description: XXIV, 541 S. 25 cm
Contents: 1 How Many Prime Numbers Are There?.- I. Euclid's Proof.- II. Goldbach Did It Too!.- III. Euler's Proof.- IV. Thue's Proof.- V. Three Forgotten Proofs.- A. Perott's Proof.- B. Auric's Proof.- C. Metrod's Proof.- VI. Washington's Proof.- VII. Furstenberg's Proof.- VIII. Euclidean Sequences.- IX. Generation of Infinite Sequences of Pairwise Relatively Prime Integers.- 2 How to Recognize Whether a Natural Number Is a Prime.- I. The Sieve of Eratosthenes.- II. Some Fundamental Theorems on Congruences.- A. Fermat's Little Theorem and Primitive Roots Modulo a Prime.- B. The Theorem of Wilson.- C. The Properties of Giuga, Wolstenholme, and Mann and Shanks.- D. The Power of a Prime Dividing a Factorial.- E. The Chinese Remainder Theorem.- F. Euler's Function.- G. Sequences of Binomials.- H. Quadratic Residues.- III. Classical Primality Tests Based on Congruences.- IV. Lucas Sequences.- V. Primality Tests Based on Lucas Sequences.- VI. Fermat Numbers.- VII. Mersenne Numbers.- VIII. Pseudoprimes.- A. Pseudoprimes in Base 2 (psp).- B. Pseudoprimes in Base a (psp(a)).- C. Euler Pseudoprimes in Base a (epsp(a)).- D. Strong Pseudoprimes in Base a (spsp(a)).- E. Somer Pseudoprimes.- IX. Carmichael Numbers.- X. Lucas Pseudoprimes.- A. Fibonacci Pseudoprimes.- B. Lucas Pseudoprimes (lpsp(P, Q)).- C. Euler-Lucas Pseudoprimes (elpsp(P, Q)) and Strong Lucas Pseudoprimes (slpsp(P, Q)).- D. Somer-Lucas Pseudoprimes.- E. Carmichael-Lucas Numbers.- XL Primality Testing and Large Primes.- A. The Cost of Testing.- B. More Primality Tests.- C. Primality Certification.- D. Fast Generation of Large Primes.- E. Titanic Primes.- F. Curious Primes.- XII. Factorization and Public Key Cryptography.- A. Factorization of Large Composite Integers.- B. Public Key Cryptography.- 3 Are There Functions Defining Prime Numbers?.- I. Functions Satisfying Condition (a).- II. Functions Satisfying Condition (b).- III. Functions Satisfying Condition (c).- IV. Prime-Producing Polynomials.- A. Surveying the Problems.- B. Polynomials with Many Initial Prime Absolute Values.- C. The Prime-Producing Polynomials Races.- D. Primes of the Form m2 + 1.- 4 How Are the Prime Numbers Distributed?.- I. The Growth of ?(x).- A. History Unfolding.- B. Sums Involving the Moebius Function.- C. Tables of Primes.- D. The Exact Value of ?(x) and Comparison with x/(log x), Li(x), and R(x).- E. The Nontrivial Zeros of ?(s).- F. Zero-Free Regions for ?(s) and the Error Term in the Prime Number Theorem.- G. The Growth of ?(s).- H. Some Properties of ?(x).- II. The n th Prime and Gaps.- A. The n th Prime.- B. Gaps Between Primes.- Interlude.- III. Twin Primes.- Addendum on k-Tuples of Primes.- IV. Primes in Arithmetic Progression.- A. There Are Infinitely Many!.- B. The Smallest Prime in an Arithmetic Progression.- C. Strings of Primes in Arithmetic Progression.- V. Primes in Special Sequences.- VI. Goldbach's Famous Conjecture.- VII. The Waring-Goldbach Problem.- A. Waring's Problem.- B. The Waring-Goldbach Problem.- VIII. The Distribution of Pseudoprimes, Carmichael Numbers, and Values of Euler's Function.- A. Distribution of Pseudoprimes.- B. Distribution of Carmichael Numbers.- C. Distribution of Lucas Pseudoprimes.- D. Distribution of Elliptic Pseudoprimes.- E. Distribution of Values of Euler's Function.- 5 Which Special Kinds of Primes Have Been Considered?.- I. Regular Primes.- II. Sophie Germain Primes.- III. Wieferich Primes.- IV. Wilson Primes.- V. Repunits and Similar Numbers.- VI. Primes with Given Initial and Final Digits.- VII. Numbers kx2n+/-1.- VIII. Primes and Second-Order Linear Recurrence Sequences.- IX. The NSW Primes.- 6 Heuristic and Probabilistic Results about Prime Numbers.- I. Prime Values of Linear Polynomials.- II. Prime Values of Polynomials of Arbitrary Degree.- III. Polynomials with Many Successive Composite Values.- IV. Partitio Numerorum.- V. Some Probabilistic Estimates.- A. Distribution of Mersenne Primes.- B. The log log Philosophy.- VI. The Density of the Set of Regular Primes.- Conclusion.- The Pages That Couldn't Wait.- Primes up to 10,000.- Index of Tables.- Index of Names.
Responsibility: Paulo Ribenboim
More information:

Reviews

Editorial reviews

Publisher Synopsis

Third EditionP. RibenboimThe New Book of Prime Number Records"A number-theoretical version of the Guinness Book of Records . . . There is much mathematics to be found in these pages. These are Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.