skip to content
Novel design of plasmonic and dielectric antireflection coatings to enhance the efficiency of perovskite solar cells
ClosePreview this item
Checking...

Novel design of plasmonic and dielectric antireflection coatings to enhance the efficiency of perovskite solar cells

Author: Omar A M Abdelraouf; Ahmed Shaker; Nageh K Allam Affiliation: Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
Edition/Format: Article Article : English
Publication:Solar Energy, v174 (2018-11-01): 803-814
Summary:
Recently, nanostructured plasmonic antireflection coatings emerge as a solution to minimize reflection in solar cells over a wideband. However, metals have large light absorption coefficient, making this solution non-reliable for efficient large-scale production. On the other hand, all dielectric antireflection coatings are considered as promising alternative due to the lower losses and easier assembly, especially  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

&AllPage.SpinnerRetrieving;

Find a copy online

Links to this journal/publication

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Article
All Authors / Contributors: Omar A M Abdelraouf; Ahmed Shaker; Nageh K Allam Affiliation: Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
ISSN:0038-092X
Language Note: English
Unique Identifier: 7862164052
Awards:

Abstract:

Recently, nanostructured plasmonic antireflection coatings emerge as a solution to minimize reflection in solar cells over a wideband. However, metals have large light absorption coefficient, making this solution non-reliable for efficient large-scale production. On the other hand, all dielectric antireflection coatings are considered as promising alternative due to the lower losses and easier assembly, especially for third generation photovoltaics such as perovskite solar cells. Herein, we report a first principles methodology for selecting and comparing optimally nanostructured antireflective coatings for enhancing the efficiency of perovskite solar cells based on Mie theory. The first part of the method includes studying absorption and scattering cross sections of five nanostructures and identifying the role of magnetic and electric dipoles. Accordingly, dimensions of each nanostructure that maximizes light coupling to the solar cell active layer was identified. The second part comprises the study of the coupling effect between closed nanostructures. Using three-dimensional finite element method optical and electrical model, periodicity and dimensions of the proposed nanostructures with the highest generated photocurrent were identified. The results showed 15% enhancement in short circuit current (Jsc

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/7862164052<\/a>> # Novel design of plasmonic and dielectric antireflection coatings to enhance the efficiency of perovskite solar cells<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Article<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"7862164052<\/span>\" ;\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"949 $l journal<\/span>\" ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/light_coupling<\/a>> ; # Light coupling<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/perovskite<\/a>> ; # Perovskite<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/solar_cells<\/a>> ; # Solar cells<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/antireflective_coating<\/a>> ; # Antireflective coating<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/nanostructures<\/a>> ; # Nanostructures<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/plasmonics<\/a>> ; # Plasmonics<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/dielectric<\/a>> ; # Dielectric<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/mie_theory<\/a>> ; # Mie theory<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Person\/allam_nageh_k<\/a>> ; # Nageh K. Allam<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Person\/shaker_ahmed<\/a>> ; # Ahmed Shaker<\/span>\n\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Person\/abdelraouf_omar_a_m<\/a>> ; # Omar AM Abdelraouf<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2018-11-01<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Recently, nanostructured plasmonic antireflection coatings emerge as a solution to minimize reflection in solar cells over a wideband. However, metals have large light absorption coefficient, making this solution non-reliable for efficient large-scale production. On the other hand, all dielectric antireflection coatings are considered as promising alternative due to the lower losses and easier assembly, especially for third generation photovoltaics such as perovskite solar cells. Herein, we report a first principles methodology for selecting and comparing optimally nanostructured antireflective coatings for enhancing the efficiency of perovskite solar cells based on Mie theory. The first part of the method includes studying absorption and scattering cross sections of five nanostructures and identifying the role of magnetic and electric dipoles. Accordingly, dimensions of each nanostructure that maximizes light coupling to the solar cell active layer was identified. The second part comprises the study of the coupling effect between closed nanostructures. Using three-dimensional finite element method optical and electrical model, periodicity and dimensions of the proposed nanostructures with the highest generated photocurrent were identified. The results showed 15% enhancement in short circuit current (Jsc<\/ce:inf><\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/5470829775<\/a>> ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/0038-092X#174<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Novel design of plasmonic and dielectric antireflection coatings to enhance the efficiency of perovskite solar cells<\/span>\" ;\u00A0\u00A0\u00A0\nschema:pageStart<\/a> \"803<\/span>\" ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"7862164052<\/span>\" ;\u00A0\u00A0\u00A0\nschema:sameAs<\/a> <http:\/\/dx.doi.org\/10.1016\/j.solener.2018.09.066<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/7862164052<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Agent\/elsevier_ltd<\/a>> # Elsevier Ltd<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Elsevier Ltd<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Person\/abdelraouf_omar_a_m<\/a>> # Omar AM Abdelraouf<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Omar AM Abdelraouf<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Person\/allam_nageh_k<\/a>> # Nageh K. Allam<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nageh K. Allam<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Person\/shaker_ahmed<\/a>> # Ahmed Shaker<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ahmed Shaker<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/antireflective_coating<\/a>> # Antireflective coating<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Antireflective coating<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/dielectric<\/a>> # Dielectric<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Dielectric<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/light_coupling<\/a>> # Light coupling<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Light coupling<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/mie_theory<\/a>> # Mie theory<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Mie theory<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/nanostructures<\/a>> # Nanostructures<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nanostructures<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/perovskite<\/a>> # Perovskite<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Perovskite<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/plasmonics<\/a>> # Plasmonics<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Plasmonics<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Thing\/solar_cells<\/a>> # Solar cells<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Solar cells<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/0038-092X<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Periodical<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Solar Energy<\/span>\" ;\u00A0\u00A0\u00A0\nschema:issn<\/a> \"0038-092X<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5470829775#Agent\/elsevier_ltd<\/a>> ; # Elsevier Ltd<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/0038-092X#174<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationVolume<\/a> ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/0038-092X<\/a>> ;\u00A0\u00A0\u00A0\nschema:volumeNumber<\/a> \"174<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/7862164052<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/7862164052<\/a>> ; # Novel design of plasmonic and dielectric antireflection coatings to enhance the efficiency of perovskite solar cells<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2018-12-02<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/science_direct<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n