skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Ordinary differential operators Preview this item
ClosePreview this item
Checking...

Ordinary differential operators

Author: Aiping Wang; Anton Zettl
Publisher: Providence, Rhode Island : American Mathematical Society, 2019 ©2019
Series: Mathematical surveys and monographs, no. 245.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
In this monograph the authors discuss self-adjoint, symmetric, and dissipative operators in Hilbert and Symplectic Geometry spaces. Part I of the book covers the theory of differential and quasi-differential expressions and equations, existence and uniqueness of solutions, continuous and differentiable dependence on initial data, adjoint expressions, the Lagrange Identity, minimal and maximal operators, etc. In Part  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Wang, Aiping, 1977-
Ordinary differential operators.
Providence, Rhode Island : American Mathematical Society, [2019]
(DLC) 2019031822
(OCoLC)1125021789
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Aiping Wang; Anton Zettl
ISBN: 9781470454302 1470454300
OCLC Number: 1130766654
Description: 1 online resource (xv, 250 pages)
Contents: First order systems --
Quasi-differential expressions and equations --
The Lagrange identity and maximal and minimal operators --
Deficiency indices --
Regular symmetric operators --
Singular symmetric operators --
Self-adjoint operators --
Self-adjoint and symmetric boundary conditions --
Solutions and spectrum --
Coefficients, the deöciency index, spectrum --
Dissipative operators --
Two-interval symmetric domains --
Two-interval symmetric domain characterization with maximal domain functions --
Green's function and adjoint problems --
Notation --
Topics not covered and open problems
Series Title: Mathematical surveys and monographs, no. 245.
Responsibility: Aiping Wang, Anton Zettl

Abstract:

The work on the foundations of Quantum Mechanics in the 1920s and 1930s provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1130766654<\/a>> # Ordinary differential operators<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Book<\/a>, schema:MediaObject<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1130766654<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/riu<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/ordinary_differential_equations_boundary_value_problems_for_ordinary_differential_operators_see_34lxx_sturm_liouville_theory_see_also_34lxx<\/a>> ; # Ordinary differential equations -- Boundary value problems {For ordinary differential operators, see 34Lxx} -- Sturm-Liouville theory [See also 34Lxx]<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/operator_theory_ordinary_differential_operators_see_also_34bxx_34lxx_ordinary_differential_operators_see_also_34bxx_34lxx_should_also_be_assigned_at_least_one_other_classification_number<\/a>> ; # Operator theory -- Ordinary differential operators [See also 34Bxx, 34Lxx] -- Ordinary differential operators [See also 34Bxx, 34Lxx] (should also be assigned at least one other classification number<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/differential_operators<\/a>> ; # Differential operators<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/ordinary_differential_equations_boundary_value_problems_for_ordinary_differential_operators_see_34lxx_linear_boundary_value_problems<\/a>> ; # Ordinary differential equations -- Boundary value problems {For ordinary differential operators, see 34Lxx} -- Linear boundary value problems<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/operator_theory_special_classes_of_linear_operators_symmetric_and_selfadjoint_operators_unbounded<\/a>> ; # Operator theory -- Special classes of linear operators -- Symmetric and selfadjoint operators (unbounded)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/515.7242\/e23\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Person\/wang_aiping_1977<\/a>> ; # Aiping Wang<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Person\/zettl_anton<\/a>> ; # Anton Zettl<\/span>\n\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2019<\/span>\" ;\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2019<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"In this monograph the authors discuss self-adjoint, symmetric, and dissipative operators in Hilbert and Symplectic Geometry spaces. Part I of the book covers the theory of differential and quasi-differential expressions and equations, existence and uniqueness of solutions, continuous and differentiable dependence on initial data, adjoint expressions, the Lagrange Identity, minimal and maximal operators, etc. In Part II characterizations of the symmetric, self-adjoint, and dissipative boundary conditions are established. In particular, the authors prove the long standing Deficiency Index Conjecture. In Part III the symmetric and self-adjoint characterizations are extended to two-interval problems. These problems have solutions which have jump discontinuities in the interior of the underlying interval. These jumps may be infinite at singular interior points. Part IV is devoted to the construction of the regular Green\'s function. The construction presented differs from the usual one as found, for example, in the classical book by Coddington and Levinson<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"First order systems -- Quasi-differential expressions and equations -- The Lagrange identity and maximal and minimal operators -- Deficiency indices -- Regular symmetric operators -- Singular symmetric operators -- Self-adjoint operators -- Self-adjoint and symmetric boundary conditions -- Solutions and spectrum -- Coefficients, the de\u00F6ciency index, spectrum -- Dissipative operators -- Two-interval symmetric domains -- Two-interval symmetric domain characterization with maximal domain functions -- Green\'s function and adjoint problems -- Notation -- Topics not covered and open problems<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/9808612650<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Series\/mathematical_surveys_and_monographs<\/a>> ; # Mathematical surveys and monographs ;<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/0076-5376<\/a>> ; # Mathematical surveys and monographs,<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1125021789<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ordinary differential operators<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1130766654<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/search.ebscohost.com\/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2326470<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781470454302<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1130766654<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/515.7242\/e23\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Person\/wang_aiping_1977<\/a>> # Aiping Wang<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1977<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Wang<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Aiping<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Aiping Wang<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Person\/zettl_anton<\/a>> # Anton Zettl<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Zettl<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Anton<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Anton Zettl<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Series\/mathematical_surveys_and_monographs<\/a>> # Mathematical surveys and monographs ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1130766654<\/a>> ; # Ordinary differential operators<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Mathematical surveys and monographs ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/differential_operators<\/a>> # Differential operators<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Differential operators<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/operator_theory_ordinary_differential_operators_see_also_34bxx_34lxx_ordinary_differential_operators_see_also_34bxx_34lxx_should_also_be_assigned_at_least_one_other_classification_number<\/a>> # Operator theory -- Ordinary differential operators [See also 34Bxx, 34Lxx] -- Ordinary differential operators [See also 34Bxx, 34Lxx] (should also be assigned at least one other classification number<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Operator theory -- Ordinary differential operators [See also 34Bxx, 34Lxx] -- Ordinary differential operators [See also 34Bxx, 34Lxx] (should also be assigned at least one other classification number<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/operator_theory_special_classes_of_linear_operators_symmetric_and_selfadjoint_operators_unbounded<\/a>> # Operator theory -- Special classes of linear operators -- Symmetric and selfadjoint operators (unbounded)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Operator theory -- Special classes of linear operators -- Symmetric and selfadjoint operators (unbounded)<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/ordinary_differential_equations_boundary_value_problems_for_ordinary_differential_operators_see_34lxx_linear_boundary_value_problems<\/a>> # Ordinary differential equations -- Boundary value problems {For ordinary differential operators, see 34Lxx} -- Linear boundary value problems<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ordinary differential equations -- Boundary value problems {For ordinary differential operators, see 34Lxx} -- Linear boundary value problems<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9808612650#Topic\/ordinary_differential_equations_boundary_value_problems_for_ordinary_differential_operators_see_34lxx_sturm_liouville_theory_see_also_34lxx<\/a>> # Ordinary differential equations -- Boundary value problems {For ordinary differential operators, see 34Lxx} -- Sturm-Liouville theory [See also 34Lxx]<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ordinary differential equations -- Boundary value problems {For ordinary differential operators, see 34Lxx} -- Sturm-Liouville theory [See also 34Lxx]<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/riu<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"riu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781470454302<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1470454300<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781470454302<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/0076-5376<\/a>> # Mathematical surveys and monographs,<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1130766654<\/a>> ; # Ordinary differential operators<\/span>\n\u00A0\u00A0\u00A0\nschema:issn<\/a> \"0076-5376<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Mathematical surveys and monographs,<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/1125021789<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Ordinary differential operators.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Print version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1130766654<\/a>> ; # Ordinary differential operators<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n