skip to content
Physical chemistry for the life sciences. Preview this item
ClosePreview this item
Checking...

Physical chemistry for the life sciences.

Author: Peter W Atkins; Julio de Paula
Publisher: New York : Freeman, 2011.
Edition/Format:   Print book : English : 2nd edView all editions and formats
Rating:

(not yet rated) 0 with reviews - Be the first.

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Peter W Atkins; Julio de Paula
ISBN: 1429231149 9781429231145
OCLC Number: 840445957
Description: 590 blz. ; .. cm.
Contents: Machine generated contents note: a.The organization of science --
b.The organization of our presentation --
a.Techniques for the study of biological systems --
b.Protein folding --
c.Rational drug design --
d.Biological energy conversion --
F.1.Atoms, ions, and molecules --
a.Bonding and nonbonding interactions --
b.Structural and functional units --
c.Levels of structure --
F.2.Bulk matter --
a.States of matter --
b.Physical state --
c.Equations of state --
F.3.Energy --
a.Varieties of energy --
b.The Boltzmann distribution --
Checklist of key concepts --
Checklist of key equations --
Discussion questions --
Exercises --
Projects --
1.The First Law --
The conservation of energy --
1.1.Systems and surroundings --
1.2.Work and heat --
a.Exothermic and endothermic processes --
b.The molecular interpretation of work and heat --
c.The molecular interpretation of temperature --
Case study 1.1 Energy conversion in organisms --
1.3.The measurement of work --
a.Sign conventions --
b.Expansion work --
c.Maximum work --
1.4.The measurement of heat --
a.Heat capacity --
b.The molecular interpretation of heat capacity --
Internal energy and enthalpy --
1.5.The internal energy --
a.Changes in internal energy --
Example 1.1 Calculating the change in internal energy --
b.The internal energy as a state function --
c.The First Law of thermodynamics --
1.6.The enthalpy --
a.The definition of enthalpy --
b.Changes in enthalpy --
c.The temperature dependence of the enthalpy --
In the laboratory 1.1 Calorimetry --
a.Bomb calorimeters --
Example 1.2 Calibrating a calorimeter and measuring the energy content of a nutrient --
b.Isobaric calorimeters --
c.Differential scanning calorimeters --
Physical and chemical change --
1.7.Enthalpy changes accompanying physical processes --
a.Phase transitions --
b.Enthalpies of vaporization, fusion, and sublimation --
1.8.Bond enthalpy --
Example 1.3 Using mean bond enthalpies --
1.9.Thermochemical properties of fuels --
Case study 1.2 Bi. Note continued: Reaction mechanisms --
7.1.The approach to equilibrium --
a.The relation between equilibrium constants and rate constants --
b.The time-dependence of the approach to equilibrium --
In the laboratory 7.1 Relaxation techniques in biochemistry --
7.2.Elementary reactions --
7.3.Consecutive reactions --
a.The variation of concentration with time --
b.The rate-determining step --
Example 7.1 Identifying a rate-determining step --
c.The steady-state approximation --
d.Pre-equilibria --
Case study 7.1 Mechanisms of protein folding and unfolding --
7.4.Diffusion control --
7.5.Kinetic and thermodynamic control --
Reaction dynamics --
7.6.Collision theory --
7.7.Transition state theory --
a.Formulation of the theory --
b.Thermodynamic parameterization --
In the laboratory 7.2 Time-resolved spectroscopy for kinetics --
7.8.The kinetic salt effect --
Example 7.2 Analyzing the kinetic salt effect --
Checklist of key concepts --
Checklist of key equations --
Further information 7.1 Collisions in the gas phase --
a.The kinetic model of gases --
b.The Maxwell distribution of speeds --
c.Molecular collisions --
Discussion questions --
Exercises --
Projects --
8.Complex biochemical processes --
Enzymes --
8.1.The Michaelis-Menten mechanism of enzyme catalysis --
Example 8.1 Analyzing a Lineweaver-Burk plot --
8.2.The analysis of complex mechanisms --
a.Sequential reactions --
b.Ping-pong reactions --
8.3.The catalytic efficiency of enzymes --
8.4.Enzyme inhibition --
Example 8.2 Distinguishing between types of inhibition --
Case study 8.1 The molecular basis of catalysis by hydrolytic enzymes --
Transport across biological membranes --
8.5.Molecular motion in liquids --
8.6.Molecular motion across membranes --
8.7.The mobility of ions --
In the laboratory 8.1 Electrophoresis --
Example 8.3 The isoelectric point of a protein --
8.8.Transport across ion channels and ion pumps --
a.The potassium channel --
b.The proton pump --
Electron transfer in. Note continued: Case study 12.5 Photodynamic therapy --
Checklist of key concepts --
Checklist of key equations --
Discussion questions --
Exercises --
Projects --
13.Magnetic resonance --
Principles of magnetic resonance --
13.1.Electrons and nuclei in magnetic fields --
13.2.The intensities of NMR and EPR transitions --
The information in NMR spectra --
13.3.The chemical shift --
a.The (Se(B scale --
b.Contributions to the shift --
13.4.The fine structure --
a.The appearance of fine structure --
Example 13.1 Accounting for the fine structure in a spectrum --
b.The origin of fine structure --
13.5.Conformational conversion and chemical exchange --
Example 13.2 Interpreting line broadening --
Pulse techniques in NMR --
13.6.Time- and frequency-domain signals --
13.7.Spin relaxation --
In the laboratory 13.1 Magnetic resonance imaging --
13.8.Proton decoupling --
13.9.The nuclear Overhauser effect --
In the laboratory 13.2 Two-dimensional NMR --
Case study 13.1 The COSY spectrum of isoleucine --
The information in EPR spectra --
13.10.The g-value --
13.11.Hyperfine structure --
Example 13.3 Predicting the hyperfine structure of an EPR spectrum --
In the laboratory 13.3 Spin probes --
Checklist of key concepts --
Checklist of key equations --
Discussion questions --
Exercises --
Projects --
Resource section --
1.Atlas of structures --
2.Units --
3.Data.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/840445957> # Physical chemistry for the life sciences.
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "840445957" ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:bookEdition "2nd ed." ;
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/54370568> ; # Julio de Paula
    schema:creator <http://viaf.org/viaf/66462931> ; # Peter W. Atkins
    schema:datePublished "2011" ;
    schema:description "Machine generated contents note: a.The organization of science -- b.The organization of our presentation -- a.Techniques for the study of biological systems -- b.Protein folding -- c.Rational drug design -- d.Biological energy conversion -- F.1.Atoms, ions, and molecules -- a.Bonding and nonbonding interactions -- b.Structural and functional units -- c.Levels of structure -- F.2.Bulk matter -- a.States of matter -- b.Physical state -- c.Equations of state -- F.3.Energy -- a.Varieties of energy -- b.The Boltzmann distribution -- Checklist of key concepts -- Checklist of key equations -- Discussion questions -- Exercises -- Projects -- 1.The First Law -- The conservation of energy -- 1.1.Systems and surroundings -- 1.2.Work and heat -- a.Exothermic and endothermic processes -- b.The molecular interpretation of work and heat -- c.The molecular interpretation of temperature -- Case study 1.1 Energy conversion in organisms -- 1.3.The measurement of work -- a.Sign conventions -- b.Expansion work -- c.Maximum work -- 1.4.The measurement of heat -- a.Heat capacity -- b.The molecular interpretation of heat capacity -- Internal energy and enthalpy -- 1.5.The internal energy -- a.Changes in internal energy -- Example 1.1 Calculating the change in internal energy -- b.The internal energy as a state function -- c.The First Law of thermodynamics -- 1.6.The enthalpy -- a.The definition of enthalpy -- b.Changes in enthalpy -- c.The temperature dependence of the enthalpy -- In the laboratory 1.1 Calorimetry -- a.Bomb calorimeters -- Example 1.2 Calibrating a calorimeter and measuring the energy content of a nutrient -- b.Isobaric calorimeters -- c.Differential scanning calorimeters -- Physical and chemical change -- 1.7.Enthalpy changes accompanying physical processes -- a.Phase transitions -- b.Enthalpies of vaporization, fusion, and sublimation -- 1.8.Bond enthalpy -- Example 1.3 Using mean bond enthalpies -- 1.9.Thermochemical properties of fuels -- Case study 1.2 Bi." ;
    schema:description "Note continued: Case study 12.5 Photodynamic therapy -- Checklist of key concepts -- Checklist of key equations -- Discussion questions -- Exercises -- Projects -- 13.Magnetic resonance -- Principles of magnetic resonance -- 13.1.Electrons and nuclei in magnetic fields -- 13.2.The intensities of NMR and EPR transitions -- The information in NMR spectra -- 13.3.The chemical shift -- a.The (Se(B scale -- b.Contributions to the shift -- 13.4.The fine structure -- a.The appearance of fine structure -- Example 13.1 Accounting for the fine structure in a spectrum -- b.The origin of fine structure -- 13.5.Conformational conversion and chemical exchange -- Example 13.2 Interpreting line broadening -- Pulse techniques in NMR -- 13.6.Time- and frequency-domain signals -- 13.7.Spin relaxation -- In the laboratory 13.1 Magnetic resonance imaging -- 13.8.Proton decoupling -- 13.9.The nuclear Overhauser effect -- In the laboratory 13.2 Two-dimensional NMR -- Case study 13.1 The COSY spectrum of isoleucine -- The information in EPR spectra -- 13.10.The g-value -- 13.11.Hyperfine structure -- Example 13.3 Predicting the hyperfine structure of an EPR spectrum -- In the laboratory 13.3 Spin probes -- Checklist of key concepts -- Checklist of key equations -- Discussion questions -- Exercises -- Projects -- Resource section -- 1.Atlas of structures -- 2.Units -- 3.Data." ;
    schema:description "Note continued: Reaction mechanisms -- 7.1.The approach to equilibrium -- a.The relation between equilibrium constants and rate constants -- b.The time-dependence of the approach to equilibrium -- In the laboratory 7.1 Relaxation techniques in biochemistry -- 7.2.Elementary reactions -- 7.3.Consecutive reactions -- a.The variation of concentration with time -- b.The rate-determining step -- Example 7.1 Identifying a rate-determining step -- c.The steady-state approximation -- d.Pre-equilibria -- Case study 7.1 Mechanisms of protein folding and unfolding -- 7.4.Diffusion control -- 7.5.Kinetic and thermodynamic control -- Reaction dynamics -- 7.6.Collision theory -- 7.7.Transition state theory -- a.Formulation of the theory -- b.Thermodynamic parameterization -- In the laboratory 7.2 Time-resolved spectroscopy for kinetics -- 7.8.The kinetic salt effect -- Example 7.2 Analyzing the kinetic salt effect -- Checklist of key concepts -- Checklist of key equations -- Further information 7.1 Collisions in the gas phase -- a.The kinetic model of gases -- b.The Maxwell distribution of speeds -- c.Molecular collisions -- Discussion questions -- Exercises -- Projects -- 8.Complex biochemical processes -- Enzymes -- 8.1.The Michaelis-Menten mechanism of enzyme catalysis -- Example 8.1 Analyzing a Lineweaver-Burk plot -- 8.2.The analysis of complex mechanisms -- a.Sequential reactions -- b.Ping-pong reactions -- 8.3.The catalytic efficiency of enzymes -- 8.4.Enzyme inhibition -- Example 8.2 Distinguishing between types of inhibition -- Case study 8.1 The molecular basis of catalysis by hydrolytic enzymes -- Transport across biological membranes -- 8.5.Molecular motion in liquids -- 8.6.Molecular motion across membranes -- 8.7.The mobility of ions -- In the laboratory 8.1 Electrophoresis -- Example 8.3 The isoelectric point of a protein -- 8.8.Transport across ion channels and ion pumps -- a.The potassium channel -- b.The proton pump -- Electron transfer in." ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/3374737540> ;
    schema:inLanguage "en" ;
    schema:name "Physical chemistry for the life sciences." ;
    schema:productID "840445957" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/840445957#PublicationEvent/new_york_freeman_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/3374737540#Agent/freeman> ; # Freeman
    schema:workExample <http://worldcat.org/isbn/9781429231145> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/840445957> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://viaf.org/viaf/54370568> # Julio de Paula
    a schema:Person ;
    schema:familyName "Paula" ;
    schema:givenName "Julio de" ;
    schema:name "Julio de Paula" ;
    .

<http://viaf.org/viaf/66462931> # Peter W. Atkins
    a schema:Person ;
    schema:familyName "Atkins" ;
    schema:givenName "Peter W." ;
    schema:name "Peter W. Atkins" ;
    .

<http://worldcat.org/isbn/9781429231145>
    a schema:ProductModel ;
    schema:isbn "1429231149" ;
    schema:isbn "9781429231145" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.