Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications. (eBook, 2010) [WorldCat.org]
skip to content
Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications.
Checking...

Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications.

Author: Joerg Schoebel; Pablo Herrero
Publisher: INTECH Open Access Publisher, 2010.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
We have presented a selection of different planar antenna designs with different properties suitable for a multitude of applications in the higher mm-wave range. Beamforming with power dividers or Rotman lenses was discussed in detail. We investigated the focusing properties of the Rotman lens and concluded with a new design concept for the positioning and orientation of the beam ports. Smaller arrays and monopole  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: 15
Material Type: Document, Internet resource
Document Type: Book, Computer File, Internet Resource
All Authors / Contributors: Joerg Schoebel; Pablo Herrero
ISBN: 9789533070292 9533070293
OCLC Number: 884026886
Language Note: En.
Description: 1 online resource

Abstract:

We have presented a selection of different planar antenna designs with different properties suitable for a multitude of applications in the higher mm-wave range. Beamforming with power dividers or Rotman lenses was discussed in detail. We investigated the focusing properties of the Rotman lens and concluded with a new design concept for the positioning and orientation of the beam ports. Smaller arrays and monopole and dipole elements were demonstrated in the 122 and 140 GHz ranges, which are interesting candidates for future applications in radar and sensing. It was shown that a low-cost approach relying on commercial circuit board processes is feasible. The fabricated antennas generally exhibit properties very close to the design values, so detrimental effects such as fabrication inaccuracies and surface waves can be well under control, even for frequencies as high as 140 GHz. The results shown in this work are generally also applicable to indoor ultra-wideband communications in the 60 GHz band. Here, antenna gains on the order of 15 dBi for transmitter and receiver are required to achieve a sufficiently high signal-to-noise ratio supporting data rates of several Gb/s under today's technological constraints (mainly transmitter power and receiver noise figure). Due to the high gain, the transmission is very directed and may be blocked, e.g. by moving people. This calls for beamsteering solutions such as the Rotman lens, which can be integrated in an essentially flat device setup. Ultimately, such a flat antenna front ends could be easily mounted on a laptop cover lid or in a PCMCIA card.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.