skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Precise vehicle classification using a quarter sized sensing system Preview this item
ClosePreview this item
Checking...

Precise vehicle classification using a quarter sized sensing system

Author: Kuntal G Patel
Publisher: [Long Beach, California] : California State University, Long Beach, 2017.
Dissertation: M.S. California State University, Long Beach 2017
Series: California State University, Long Beach.; Master's thesis collection, Department of Electrical Engineering.
Edition/Format:   Thesis/dissertation : Document : Thesis/dissertation : eBook   Computer File : English
Summary:
Abstract: Due to continuously increasing traffic on highways and roads, the congestion level on the nation's roadways is spiraling out of control. Current implementations for the traffic detection used in the United States utilize inductive loop technologies placed during road construction, or they are sawed and placed in after. These inductive-loop traffic detectors are primarily used for the detection of vehicles;
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Academic theses
Classification
Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Kuntal G Patel
ISBN: 9781369734072 1369734077
OCLC Number: 1004239789
Description: 1 online resource (x, 72 pages) : illustrations (some color)
Series Title: California State University, Long Beach.; Master's thesis collection, Department of Electrical Engineering.
Responsibility: by Kuntal G. Patel.

Abstract:

Abstract: Due to continuously increasing traffic on highways and roads, the congestion level on the nation's roadways is spiraling out of control. Current implementations for the traffic detection used in the United States utilize inductive loop technologies placed during road construction, or they are sawed and placed in after. These inductive-loop traffic detectors are primarily used for the detection of vehicles; however, more advanced systems can classify vehicles in addition to detection as well as save large amounts of power. To improve the traffic system and make it more advanced, in this thesis, an in-node microprocessor-based vehicle classification approach to analyze and determine the types of vehicles passing over a 3-axis magnetometer sensor is proposed. This approach for vehicle classification utilizes the J48 classification algorithm implemented in Waikato Environment for Knowledge Analysis (WEKA), a machine learning software suite, and the logistic regression model implemented in MATLAB (MATrix LABoratory) as well. The J48 is a Quinlan's C4.5 algorithm, an extension of the decision tree machine learning based on the ID3 (Iterative Dichotomiser 3) algorithm. The decision tree model is generated from a set of features extracted from the data of the vehicles passing over the 3-axis sensor. The features are attributes provided with correct classifications to the J48 training algorithm to generate a decision tree model with varying degrees of classification rates based on cross-validation. Ideally, using fewer attributes to generate the model allows for the highest computational efficiency due to fewer features needed to be calculated while minimizing the tree with fewer branches. The generated tree model can then be easily implemented using nested if-loops in any language on a multitude of microprocessors. In addition, setting an adaptive baseline to negate the effects of the background magnetic field allows reuse of the same tree model in multiple environments. In addition to the J48, the binary logistic regression model is also used here to estimate the probability of a binary response (0 or 1) based on one or more predictors (or independent) variables (features). The reason the binary logistic model is used in this thesis is because only two classes of the vehicles are being analyzed here. A Sedan is taken as logic 0, and a Sports Utility Vehicle (SUV) is taken as logic 1; both of these vehicle types are the main concern as these two types are quite difficult to differentiate from their magnetic signature.

The logistic regression measures the relationship between the categorical dependent variable and one or more independent variables by estimating the probabilities using a logistic function. The logistic regression is a special case of the Generalized Linear Model (GLM) and is based on the relationship between dependent (either Sedan or SUV) and independent variables (features). This model predicts the probability of a car being a Sedan or an SUV. If the probability of a car exceeds the required amount, it classifies the car type as either a Sedan or an SUV. The result of this experiment shows that the vehicle classification system is effective and efficient.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1004239789<\/a>> # Precise vehicle classification using a quarter sized sensing system<\/span>\n\u00A0\u00A0\u00A0\u00A0a \npto:Web_document<\/a>, schema:MediaObject<\/a>, schema:CreativeWork<\/a>, bgn:Thesis<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nbgn:inSupportOf<\/a> \"\" ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1004239789<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/cau<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/wireless_sensor_networks<\/a>> ; # Wireless sensor networks<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/traffic_engineering<\/a>> ; # Traffic engineering<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/motor_vehicles<\/a>> ; # Motor vehicles<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/motor_vehicles_classification<\/a>> ; # Motor vehicles--Classification<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Person\/patel_kuntal_g<\/a>> ; # Kuntal G. Patel<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2017<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Abstract: Due to continuously increasing traffic on highways and roads, the congestion level on the nation\'s roadways is spiraling out of control. Current implementations for the traffic detection used in the United States utilize inductive loop technologies placed during road construction, or they are sawed and placed in after. These inductive-loop traffic detectors are primarily used for the detection of vehicles; however, more advanced systems can classify vehicles in addition to detection as well as save large amounts of power. To improve the traffic system and make it more advanced, in this thesis, an in-node microprocessor-based vehicle classification approach to analyze and determine the types of vehicles passing over a 3-axis magnetometer sensor is proposed. This approach for vehicle classification utilizes the J48 classification algorithm implemented in Waikato Environment for Knowledge Analysis (WEKA), a machine learning software suite, and the logistic regression model implemented in MATLAB (MATrix LABoratory) as well. The J48 is a Quinlan\'s C4.5 algorithm, an extension of the decision tree machine learning based on the ID3 (Iterative Dichotomiser 3) algorithm. The decision tree model is generated from a set of features extracted from the data of the vehicles passing over the 3-axis sensor. The features are attributes provided with correct classifications to the J48 training algorithm to generate a decision tree model with varying degrees of classification rates based on cross-validation. Ideally, using fewer attributes to generate the model allows for the highest computational efficiency due to fewer features needed to be calculated while minimizing the tree with fewer branches. The generated tree model can then be easily implemented using nested if-loops in any language on a multitude of microprocessors. In addition, setting an adaptive baseline to negate the effects of the background magnetic field allows reuse of the same tree model in multiple environments. In addition to the J48, the binary logistic regression model is also used here to estimate the probability of a binary response (0 or 1) based on one or more predictors (or independent) variables (features). The reason the binary logistic model is used in this thesis is because only two classes of the vehicles are being analyzed here. A Sedan is taken as logic 0, and a Sports Utility Vehicle (SUV) is taken as logic 1; both of these vehicle types are the main concern as these two types are quite difficult to differentiate from their magnetic signature.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"The logistic regression measures the relationship between the categorical dependent variable and one or more independent variables by estimating the probabilities using a logistic function. The logistic regression is a special case of the Generalized Linear Model (GLM) and is based on the relationship between dependent (either Sedan or SUV) and independent variables (features). This model predicts the probability of a car being a Sedan or an SUV. If the probability of a car exceeds the required amount, it classifies the car type as either a Sedan or an SUV. The result of this experiment shows that the vehicle classification system is effective and efficient.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/4500290619<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Academic theses<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Classification<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Series\/master_s_thesis_collection_department_of_electrical_engineering<\/a>> ; # Master\'s thesis collection, Department of Electrical Engineering.<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Precise vehicle classification using a quarter sized sensing system<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1004239789<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/csulb.idm.oclc.org\/login?url=https:\/\/search.proquest.com\/docview\/1896603113?accountid=10351<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781369734072<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1004239789<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Organization\/california_state_university_long_beach<\/a>> # California State University, Long Beach.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"California State University, Long Beach.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Person\/patel_kuntal_g<\/a>> # Kuntal G. Patel<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Patel<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Kuntal G.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Kuntal G. Patel<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Series\/master_s_thesis_collection_department_of_electrical_engineering<\/a>> # Master\'s thesis collection, Department of Electrical Engineering.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Organization\/california_state_university_long_beach<\/a>> ; # California State University, Long Beach.<\/span>\n\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1004239789<\/a>> ; # Precise vehicle classification using a quarter sized sensing system<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Master\'s thesis collection, Department of Electrical Engineering.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"[Master\'s thesis collection, Department of Electrical Engineering]<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/motor_vehicles<\/a>> # Motor vehicles<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Motor vehicles<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/motor_vehicles_classification<\/a>> # Motor vehicles--Classification<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Motor vehicles--Classification<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/traffic_engineering<\/a>> # Traffic engineering<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Traffic engineering<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4500290619#Topic\/wireless_sensor_networks<\/a>> # Wireless sensor networks<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Wireless sensor networks<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/cau<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"cau<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781369734072<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1369734077<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781369734072<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n