skip to content
R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet Preview this item
ClosePreview this item
Checking...

R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

Author: Mark Hodnett; Joshua F Wiley
Publisher: Birmingham : Packt Publishing Ltd, 2018.
Edition/Format:   eBook : Document : English : Second editionView all editions and formats
Summary:
This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. By the end of this book, you will be able to apply deep learning to real-world projects.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Hodnett, Mark.
R Deep Learning Essentials : A Step-By-step Guide to Building Deep Learning Models Using TensorFlow, Keras, and MXNet, 2nd Edition.
Birmingham : Packt Publishing Ltd, ©2018
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Mark Hodnett; Joshua F Wiley
ISBN: 9781788997805 1788997808
OCLC Number: 1051140715
Notes: Includes index.
Document classification.
Description: 1 online resource.
Contents: Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R. Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data --
the consequences explained; Use case --
building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter. Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case --
improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case --
using MXNet for classification and regression; Data download and exploration. Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models. Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning.
Responsibility: Mark Hodnett, Joshua F. Wiley.

Abstract:

This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1051140715> # R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "1051140715" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/5391917090#Place/birmingham> ; # Birmingham
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'https://img1.od-cdn.com/ImageType-100/6135-1/{1BBFB26C-0C51-4300-AD4D-8E976B58BE8E}Img100.jpg'" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5391917090#Topic/artificial_intelligence> ; # Artificial intelligence
    schema:about <http://experiment.worldcat.org/entity/work/data/5391917090#Topic/machine_learning> ; # Machine learning
    schema:about <http://experiment.worldcat.org/entity/work/data/5391917090#Topic/neural_networks_computer_science> ; # Neural networks (Computer science)
    schema:about <http://experiment.worldcat.org/entity/work/data/5391917090#Topic/mathematics_applied> ; # MATHEMATICS / Applied
    schema:about <http://experiment.worldcat.org/entity/work/data/5391917090#Topic/r_computer_program_language> ; # R (Computer program language)
    schema:about <http://experiment.worldcat.org/entity/work/data/5391917090#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS / Probability & Statistics / General
    schema:about <http://dewey.info/class/519.502855133/e23/> ;
    schema:author <http://experiment.worldcat.org/entity/work/data/5391917090#Person/hodnett_mark> ; # Mark Hodnett
    schema:author <http://experiment.worldcat.org/entity/work/data/5391917090#Person/wiley_joshua_f> ; # Joshua F. Wiley
    schema:bookEdition "Second edition." ;
    schema:bookFormat schema:EBook ;
    schema:datePublished "2018" ;
    schema:description "Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R."@en ;
    schema:description "This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. By the end of this book, you will be able to apply deep learning to real-world projects."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5391917090> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/5391917090#CreativeWork/r_deep_learning_essentials_a_step_by_step_guide_to_building_deep_learning_models_using_tensorflow_keras_and_mxnet_2nd_edition> ;
    schema:name "R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet"@en ;
    schema:productID "1051140715" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/1051140715#PublicationEvent/birmingham_packt_publishing_ltd_2018> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/5391917090#Agent/packt_publishing_ltd> ; # Packt Publishing Ltd
    schema:url <http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5501083> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1879523> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1879523> ;
    schema:url <https://www.overdrive.com/search?q=1BBFB26C-0C51-4300-AD4D-8E976B58BE8E> ;
    schema:url "https://img1.od-cdn.com/ImageType-100/6135-1/{1BBFB26C-0C51-4300-AD4D-8E976B58BE8E}Img100.jpg" ;
    schema:url <https://samples.overdrive.com/?crid=1bbfb26c-0c51-4300-ad4d-8e976b58be8e&.epub-sample.overdrive.com> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=5501083> ;
    schema:workExample <http://worldcat.org/isbn/9781788997805> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1051140715> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5391917090#Agent/packt_publishing_ltd> # Packt Publishing Ltd
    a bgn:Agent ;
    schema:name "Packt Publishing Ltd" ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Person/hodnett_mark> # Mark Hodnett
    a schema:Person ;
    schema:familyName "Hodnett" ;
    schema:givenName "Mark" ;
    schema:name "Mark Hodnett" ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Person/wiley_joshua_f> # Joshua F. Wiley
    a schema:Person ;
    schema:familyName "Wiley" ;
    schema:givenName "Joshua F." ;
    schema:name "Joshua F. Wiley" ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Topic/artificial_intelligence> # Artificial intelligence
    a schema:Intangible ;
    schema:name "Artificial intelligence"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Topic/mathematics_applied> # MATHEMATICS / Applied
    a schema:Intangible ;
    schema:name "MATHEMATICS / Applied"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS / Probability & Statistics / General
    a schema:Intangible ;
    schema:name "MATHEMATICS / Probability & Statistics / General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Topic/neural_networks_computer_science> # Neural networks (Computer science)
    a schema:Intangible ;
    schema:name "Neural networks (Computer science)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5391917090#Topic/r_computer_program_language> # R (Computer program language)
    a schema:Intangible ;
    schema:name "R (Computer program language)"@en ;
    .

<http://worldcat.org/entity/work/data/5391917090#CreativeWork/r_deep_learning_essentials_a_step_by_step_guide_to_building_deep_learning_models_using_tensorflow_keras_and_mxnet_2nd_edition>
    a schema:CreativeWork ;
    rdfs:label "R Deep Learning Essentials : A Step-By-step Guide to Building Deep Learning Models Using TensorFlow, Keras, and MXNet, 2nd Edition." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1051140715> ; # R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet
    .

<http://worldcat.org/isbn/9781788997805>
    a schema:ProductModel ;
    schema:isbn "1788997808" ;
    schema:isbn "9781788997805" ;
    .

<http://www.worldcat.org/title/-/oclc/1051140715>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1051140715> ; # R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet
    schema:dateModified "2019-05-02" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.