skip to content
Real and complex analysis Preview this item
ClosePreview this item

Real and complex analysis

Author: Walter Rudin
Publisher: New York : McGraw-Hill, ©1987.
Series: McGraw-Hill series in higher mathematics.
Edition/Format:   Print book : English : 3rd edView all editions and formats

Presents the basic techniques and theorems of analysis. This work includes a chapter on differentiation. It presents proofs of theorems and many exercises appear at the end of each chapter. It is  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Additional Physical Format: Online version:
Rudin, Walter, 1921-
Real and complex analysis.
New York : McGraw-Hill, ©1987
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Walter Rudin
ISBN: 0070542341 9780070542341 9780071002769 0071002766
OCLC Number: 13093736
Notes: Cover title: Real & complex analysis.
Description: xiv, 416 pages ; 24 cm.
Contents: Preface Prologue: The Exponential Function Chapter 1: Abstract Integration Set-theoretic notations and terminology The concept of measurability Simple functions Elementary properties of measures Arithmetic in [0, 8] Integration of positive functions Integration of complex functions The role played by sets of measure zero Exercises Chapter 2: Positive Borel Measures Vector spaces Topological preliminaries The Riesz representation theorem Regularity properties of Borel measures Lebesgue measure Continuity properties of measurable functions Exercises Chapter 3: Lp-Spaces Convex functions and inequalities The Lp-spaces Approximation by continuous functions Exercises Chapter 4: Elementary Hilbert Space Theory Inner products and linear functionals Orthonormal sets Trigonometric series Exercises Chapter 5: Examples of Banach Space Techniques Banach spaces Consequences of Baire's theorem Fourier series of continuous functions Fourier coefficients of L1-functions The Hahn-Banach theorem An abstract approach to the Poisson integral Exercises Chapter 6: Complex Measures Total variation Absolute continuity Consequences of the Radon-Nikodym theorem Bounded linear functionals on Lp The Riesz representation theorem Exercises Chapter 7: Differentiation Derivatives of measures The fundamental theorem of Calculus Differentiable transformations Exercises Chapter 8: Integration on Product Spaces Measurability on cartesian products Product measures The Fubini theorem Completion of product measures Convolutions Distribution functions Exercises Chapter 9: Fourier Transforms Formal properties The inversion theorem The Plancherel theorem The Banach algebra L1 Exercises Chapter 10: Elementary Properties of Holomorphic Functions Complex differentiation Integration over paths The local Cauchy theorem The power series representation The open mapping theorem The global Cauchy theorem The calculus of residues Exercises Chapter 11: Harmonic Functions The Cauchy-Riemann equations The Poisson integral The mean value property Boundary behavior of Poisson integrals Representation theorems Exercises Chapter 12: The Maximum Modulus Principle Introduction The Schwarz lemma The Phragmen-Lindelof method An interpolation theorem A converse of the maximum modulus theorem Exercises Chapter 13: Approximation by Rational Functions Preparation Runge's theorem The Mittag-Leffler theorem Simply connected regions Exercises Chapter 14: Conformal Mapping Preservation of angles Linear fractional transformations Normal families The Riemann mapping theorem The class L Continuity at the boundary Conformal mapping of an annulus Exercises Chapter 15: Zeros of Holomorphic Functions Infinite Products The Weierstrass factorization theorem An interpolation problem Jensen's formula Blaschke products The Muntz-Szas theorem Exercises Chapter 16: Analytic Continuation Regular points and singular points Continuation along curves The monodromy theorem Construction of a modular function The Picard theorem Exercises Chapter 17: Hp-Spaces Subharmonic functions The spaces Hp and N The theorem of F. and M. Riesz Factorization theorems The shift operator Conjugate functions Exercises Chapter 18: Elementary Theory of Banach Algebras Introduction The invertible elements Ideals and homomorphisms Applications Exercises Chapter 19: Holomorphic Fourier Transforms Introduction Two theorems of Paley and Wiener Quasi-analytic classes The Denjoy-Carleman theorem Exercises Chapter 20: Uniform Approximation by Polynomials Introduction Some lemmas Mergelyan's theorem Exercises Appendix: Hausdorff's Maximality Theorem Notes and Comments Bibliography List of Special Symbols Index
Series Title: McGraw-Hill series in higher mathematics.
Other Titles: Real & complex analysis.
Responsibility: Walter Rudin.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Real and complex analysis
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "13093736" ;
    library:placeOfPublication <> ; # New York
    library:placeOfPublication <> ;
    rdfs:seeAlso <> ; # Real & complex analysis.
    schema:about <> ; # Analyse (wiskunde)
    schema:about <> ; # Analyse mathématique
    schema:about <> ;
    schema:about <> ; # Mathematical analysis
    schema:bookEdition "3rd ed." ;
    schema:bookFormat bgn:PrintBook ;
    schema:copyrightYear "1987" ;
    schema:creator <> ; # Walter Rudin
    schema:datePublished "1987" ;
    schema:exampleOfWork <> ;
    schema:inLanguage "en" ;
    schema:isPartOf <> ; # McGraw-Hill series in higher mathematics.
    schema:isSimilarTo <> ;
    schema:name "Real and complex analysis"@en ;
    schema:productID "13093736" ;
    schema:publication <> ;
    schema:publisher <> ; # McGraw-Hill
    schema:url <> ;
    schema:url <> ;
    schema:url <> ;
    schema:workExample <> ;
    schema:workExample <> ;
    umbel:isLike <> ;
    wdrs:describedby <> ;

Related Entities

<> # New York
    a schema:Place ;
    schema:name "New York" ;

<> # Real & complex analysis.
    a schema:CreativeWork ;
    schema:name "Real & complex analysis." ;

<> # McGraw-Hill series in higher mathematics.
    a bgn:PublicationSeries ;
    schema:hasPart <> ; # Real and complex analysis
    schema:name "McGraw-Hill series in higher mathematics." ;
    schema:name "McGraw-Hill series in higher mathematics" ;

<> # Analyse mathématique
    a schema:Intangible ;
    schema:name "Analyse mathématique"@en ;

<> # Analyse (wiskunde)
    a schema:Intangible ;
    schema:name "Analyse (wiskunde)"@en ;

<> # Mathematical analysis
    a schema:Intangible ;
    schema:name "Mathematical analysis"@en ;

<> # Walter Rudin
    a schema:Person ;
    schema:birthDate "1921" ;
    schema:deathDate "2010" ;
    schema:familyName "Rudin" ;
    schema:givenName "Walter" ;
    schema:name "Walter Rudin" ;

    a schema:ProductModel ;
    schema:isbn "0070542341" ;
    schema:isbn "9780070542341" ;

    a schema:ProductModel ;
    schema:isbn "0071002766" ;
    schema:isbn "9780071002769" ;

    a schema:CreativeWork ;
    rdfs:label "Real and complex analysis." ;
    schema:description "Online version:" ;
    schema:isSimilarTo <> ; # Real and complex analysis

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.