skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Semiparametric theory and missing data Preview this item
ClosePreview this item
Checking...

Semiparametric theory and missing data

Author: Anastasios A Tsiatis
Publisher: New York : Springer, ©2006.
Series: Springer series in statistics.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"This book combines much of what is known in regard to the theory of estimation for semiparametric models with missing data in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is at a level that is both rigorous and intuitive, relying on geometric ideas to reinforce the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Anastasios A Tsiatis
ISBN: 0387324488 9780387324487 9780387373454 0387373454
OCLC Number: 70677376
Description: xvi, 383 pages ; 24 cm
Contents: Introduction to semiparametric models --
Hilbert Space for random vectors --
The geometry of influence functions --
Semiparametric models --
Examples of semiparametric models --
Models and methods for missing data --
Missing and coarsening at random for semiparametric models --
The nuisance tangent space and its orthogonal complement --
Augmented inverse probability weighted complete-case estimators --
Improving efficiency and double robustness with coarsened data --
Locally efficient estimators for coarsened-data semiparametric models --
Approximate methods for gaining efficiency --
Double-robust estimator of the average causal treatment effect --
Multiple imputation: a frequentist perspective.
Series Title: Springer series in statistics.
Responsibility: Anastasios A. Tsiatis.
More information:

Abstract:

This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner.  Read more...

Reviews

Editorial reviews

Publisher Synopsis

From the reviews:"The author, who does not need an introduction...had presented with clarity how he views three different subjects within a unified approach for statistical inference....It is a long Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/70677376<\/a>> # Semiparametric theory and missing data<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"70677376<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/models_statistical<\/a>> ; # Models, Statistical<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/ontbrekende_gegevens<\/a>> ; # Ontbrekende gegevens<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/519.544\/e22\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/semiparametrische_schatzung<\/a>> ; # Semiparametrische Sch\u00E4tzung<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/parameter_estimation<\/a>> ; # Parameter estimation<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/inferencia_semiparametrica<\/a>> ; # Infer\u00EAncia semiparam\u00E9trica<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/missing_observations_statistics<\/a>> ; # Missing observations (Statistics)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/fehlende_daten<\/a>> ; # Fehlende Daten<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2006<\/span>\" ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/162728629<\/a>> ; # Anastasios Athanasios Tsiatis<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2006<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Introduction to semiparametric models -- Hilbert Space for random vectors -- The geometry of influence functions -- Semiparametric models -- Examples of semiparametric models -- Models and methods for missing data -- Missing and coarsening at random for semiparametric models -- The nuisance tangent space and its orthogonal complement -- Augmented inverse probability weighted complete-case estimators -- Improving efficiency and double robustness with coarsened data -- Locally efficient estimators for coarsened-data semiparametric models -- Approximate methods for gaining efficiency -- Double-robust estimator of the average causal treatment effect -- Multiple imputation: a frequentist perspective.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/69917063<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Series\/springer_series_in_statistics<\/a>> ; # Springer series in statistics.<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Semiparametric theory and missing data<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"70677376<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/70677376#PublicationEvent\/new_york_springer_2006<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Agent\/springer<\/a>> ; # Springer<\/span>\n\u00A0\u00A0\u00A0\nschema:reviews<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/70677376#Review\/-860884863<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.1007\/0-387-37345-4<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/swbplus.bsz-bw.de\/bsz253062934cov.htm<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/deposit.ddb.de\/cgi-bin\/dokserv?id=2765491&prov=M&dok_var=1&dok_ext=htm<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/catdir.loc.gov\/catdir\/enhancements\/fy0818\/2006921164-t.html<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387324487<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387373454<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/d-nb.info\/978163001<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/70677376<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> # New York<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"New York<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/519.544\/e22\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Agent\/springer<\/a>> # Springer<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Series\/springer_series_in_statistics<\/a>> # Springer series in statistics.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/70677376<\/a>> ; # Semiparametric theory and missing data<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer series in statistics.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer series in statistics<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/fehlende_daten<\/a>> # Fehlende Daten<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Fehlende Daten<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/inferencia_semiparametrica<\/a>> # Infer\u00EAncia semiparam\u00E9trica<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Infer\u00EAncia semiparam\u00E9trica<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/missing_observations_statistics<\/a>> # Missing observations (Statistics)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Missing observations (Statistics)<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/models_statistical<\/a>> # Models, Statistical<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Models, Statistical<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/ontbrekende_gegevens<\/a>> # Ontbrekende gegevens<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ontbrekende gegevens<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/parameter_estimation<\/a>> # Parameter estimation<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Parameter estimation<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Topic\/semiparametrische_schatzung<\/a>> # Semiparametrische Sch\u00E4tzung<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Semiparametrische Sch\u00E4tzung<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"nyu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/162728629<\/a>> # Anastasios Athanasios Tsiatis<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Tsiatis<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Anastasios Athanasios<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Anastasios A.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Anastasios Athanasios Tsiatis<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387324487<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387324488<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387324487<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387373454<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387373454<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387373454<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/70677376<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/70677376<\/a>> ; # Semiparametric theory and missing data<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-04-07<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/70677376#PublicationEvent\/new_york_springer_2006<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/69917063#Agent\/springer<\/a>> ; # Springer<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/70677376#Review\/-860884863<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Review<\/a> ;\u00A0\u00A0\u00A0\nschema:itemReviewed<\/a> <http:\/\/www.worldcat.org\/oclc\/70677376<\/a>> ; # Semiparametric theory and missing data<\/span>\n\u00A0\u00A0\u00A0\nschema:reviewBody<\/a> \"\"This book combines much of what is known in regard to the theory of estimation for semiparametric models with missing data in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is at a level that is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.\"--Jacket.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n