Theorems and counterexamples in mathematics (Book, 1990) []
skip to content
Theorems and counterexamples in mathematics Preview this item
ClosePreview this item

Theorems and counterexamples in mathematics

Author: Bernard R Gelbaum; John Meigs Hubbell Olmsted
Publisher: New York : Springer-Verlag, ©1990.
Series: Problem books in mathematics.
Edition/Format:   Print book : EnglishView all editions and formats

The contents are intended to provide graduate and ad vanced undergraduate students as well as the general mathematical public with a modern treatment of some theorems and examples that constitute a  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Bernard R Gelbaum; John Meigs Hubbell Olmsted
ISBN: 0387973427 9780387973425
OCLC Number: 300428026
Description: xxxiv, 305 pages : illustrations
Contents: 1 Algebra.- 1.1 Group Theory.- 1.1.1 Axioms.- 1.1.2 Subgroups.- 1.1.3 Exact versus splitting sequences.- 1.1.4 The functional equation:f (x +y) = f (x) + f(y).- 1.1.5 Free groups; free topological groups.- 1.1.6 Finite simple groups.- 1.2 Algebras.- 1.2.1 Division algebras ("noncommutative fields").- 1.2.2 General algebras.- 1.2.3 Miscellany.- 1.3 Linear Algebra.- 1.3.1 Finite-dimensional vector spaces.- 1.3.2 General vector spaces.- 1.3.3 Linear programming.- 2 Analysis.- 2.1 Classical Real Analysis.- 2.1.1 ?X.- 2.1.2 Derivatives and extrema.- 2.1.3 Convergence of sequences and series.- 2.1.4 ?X x Y.- 2.2 Measure Theory.- 2.2.1 Measurable and nonmeasurable sets.- 2.2.2 Measurable and nonmeasurable functions.- 2.2.3 Group-invariant measures.- 2.3 Topological Vector Spaces.- 2.3.1 Bases.- 2.3.2 Dual spaces and reflexivity.- 2.3.3 Special subsets of Banach spaces.- 2.3.4 Function spaces.- 2.4 Topological Algebras.- 2.4.1 Derivations.- 2.4.2 Semisimplicity.- 2.5 Differential Equations.- 2.5.1 Wronskians.- 2.5.2 Existence/uniqueness theorems.- 2.6 Complex Variable Theory.- 2.6.1 Morera's theorem.- 2.6.2 Natural boundaries.- 2.6.3 Square roots.- 2.6.4 Uniform approximation.- 2.6.5 Rouche's theorem.- 2.6.6 Bieberbach's conjecture.- 3 Geometry/Topology.- 3.1 Euclidean Geometry.- 3.1.1 Axioms of Euclidean geometry.- 3.1.2 Topology of the Euclidean plane.- 3.2 Topological Spaces.- 3.2.1 Metric spaces.- 3.2.2 General topological spaces.- 3.3 Exotica in Differential Topology.- 4 Probability Theory.- 4.1 Independence.- 4.2 Stochastic Processes.- 4.3 Transition Matrices.- 5 Foundations.- 5.1 Logic.- 5.2 Set Theory.- Supplemental Bibliography.- Symbol List.- Glossary/Index.
Series Title: Problem books in mathematics.
Responsibility: Bernard R. Gelbaum, John M.H. Olmsted.


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.