skip to content
Thermodynamique de l'assemblage de nano-structures et d'origami d'ADN Preview this item
ClosePreview this item
Checking...

Thermodynamique de l'assemblage de nano-structures et d'origami d'ADN

Author: Clothilde CoilhacOlivier BourgeoisHervé GuillouElisabeth CharlaixYannick RondelezAll authors
Publisher: 2018.
Dissertation: Thèse de doctorat : Nanophysique : Université Grenoble Alpes (ComUE) : 2018.
Edition/Format:   Computer file : Document : Thesis/dissertation : French
Summary:
L'ADN (acide désoxyribonucléique) est le support de notre génome, c'est aussi un biopolymère dont les propriétés d'hybridation de deux simples brins complémentaires en une double hélice permettent son utilisation comme brique élémentaire pour l'auto-assemblage de structures avec une résolution de quelques nanomètres. Parmi les différentes méthodes développées, l'origami d'ADN dans lequel un simple
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Thèses et écrits académiques
Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Clothilde Coilhac; Olivier Bourgeois; Hervé Guillou; Elisabeth Charlaix; Yannick Rondelez; Javier Rodriguez-Viejo; Juan Elezgaray; Communauté d'universités et d'établissements Université Grenoble Alpes.; École doctorale physique (Grenoble).; Institut Néel (Grenoble).
OCLC Number: 1043939390
Notes: Titre provenant de l'écran-titre.
Description: 1 online resource
Responsibility: Clothilde Coilhac ; sous la direction de Olivier Bourgeois et de Hervé Guillou.

Abstract:

L'ADN (acide désoxyribonucléique) est le support de notre génome, c'est aussi un biopolymère dont les propriétés d'hybridation de deux simples brins complémentaires en une double hélice permettent son utilisation comme brique élémentaire pour l'auto-assemblage de structures avec une résolution de quelques nanomètres. Parmi les différentes méthodes développées, l'origami d'ADN dans lequel un simple brin d'ADN issu du génome d'un phage est replié algorithmiquement par un ensemble de brins synthétiques plus petits s'est démontré très robuste pour l'assemblage de structures bi ou tridimensionnelles. La conception de ces origami est basée sur la thermodynamique à l'équilibre, c'est à dire sur l'optimisation de l'appariement complémentaire des bases. Cependant, bien que des outils interactifs qui facilitent la conception de structures aient été développés, très peu de recherches se sont focalisées sur le processus du repliement et sur son optimisation. Notre travail a consisté à étudier la thermodynamique de nanostructures d'ADN afin de mieux comprendre le processus d'assemblage et d'en identifier des étapes clés.Nous avons effectué des mesures en calorimétrie différentielle à balayage (DSC) sur des structures modèles et des origami d'ADN. Ainsi, nous avons pu identifier la présence d'étapes clés dans le repliement de nanostructures comportant un petit nombre de brins d'ADN. Nous montrons qu'en modifiant les séquences il est possible de changer la coopérativité et la stabilité de l'assemblage des nanostructures et donc de modifier le chemin de repliement.L'étude d'origami simplifiés comportant une ou deux agrafes nous a permis de mesurer l'influence de la position des agrafes, des tailles de boucles et de l'orientations des brins d'ADN sur la thermodynamique du repliement.Enfin, les mesures calorimétriques effectuées sur des origami d'ADN nous ont permis de résoudre l'hybridation collective d'ensemble d'agrafes. Cela nous permet de hiérarchiser l'assemblage de l'origami en domaines distincts.Notre travail de thèse a également consisté au développement de méthodes innovantes de nanocalorimétrie ultrasensible intégrant de la microfluidique. Ces méthodes calorimétriques permettront d'accéder aux paramètres cinétiques de l'assemblage en plus des paramètres thermodynamiques à l'équilibre.Nos résultats obtenus sur les nanostructures modèles montrent qu'il est possible d'optimiser la conception des nanostructures d'ADN en intégrant dans la conception le processus d'assemblage. Des nanostructures d'ADN à l'assemblage performant permettront peut-être à l'avenir le développement d'automates moléculaires synthétiques qui sont une des applications très prometteuses de ces systèmes.

DNA is the support of genetic information. The property of self-assembly of two complementary single strands to form a double helix enable the use of this biopolymer as a building block for nanofabrication. DNA origami are a method which enable the self-assembly of 2D or 3D nanostructures. In this method, a long single-stranded DNA taken from the genome of a phage is folded on itself in a programmable way thanks to a lot of short synthetic DNA strands. The design of origami is based on thermodynamic and on the optimization of the base pairing in the structures. However, although interactive tools that facilitate the design of DNA nano-structures have been developed, we know little about the folding process and its optimization. In this work, we study the thermodynamics of DNA nanostructures in order to have a better understanding of the folding process and to identify the key steps.We performed differential scanning calorimetry (DSC) on model structures and DNA origami. Thus, we have been able to identify the presence of key steps in the folding of small nanostructures. We show that by changing the sequences of the strands, it is possible to change the cooperativity and the stability of the assembly of the nanostructure and thus change the folding path.The study of small origami with one or two staples allowed us the see the influence of the position of the staples, of the sizes of the loops and of the orientation of the staples on the thermodynamic of the folding.Finally, the calorimetric measurements performed on origami allowed us to solve the collective hybridization of staple sets. This enable us to prioritize the origami assembly into separate domains.This work also consisted of the development of innovative methods of ultra-sensitive nano-calorimetry integrating microfluidics. These calorimetric methods will give us the access to the kinetic parameters of the folding and to the equilibrium thermodynamic parameters.Our results obtained on model nano-structures show that it is possible to optimize the design of DNA nanostructures by integrating the assembly process in the design of the structures. Such high-performance DNA nanostructures may allow in the future the development of molecular robot which is a very promising application of DNA nanostructures.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1043939390<\/a>> # Thermodynamique de l\'assemblage de nano-structures et d\'origami d\'ADN<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:MediaObject<\/a>, bgn:Thesis<\/a>, bgn:ComputerFile<\/a> ;\u00A0\u00A0\u00A0\nbgn:inSupportOf<\/a> \"Th\u00E8se de doctorat : Nanophysique : Universit\u00E9 Grenoble Alpes (ComUE) : 2018.<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1043939390<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/nanostructures_proprietes_thermiques<\/a>> ; # Nanostructures--Propri\u00E9t\u00E9s thermiques<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/calorimetrie_differentielle_a_balayage<\/a>> ; # Calorim\u00E9trie diff\u00E9rentielle \u00E0 balayage<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/adn<\/a>> ; # ADN<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/nanocalorimetrie<\/a>> ; # Nanocalorim\u00E9trie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/530\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/thermodynamique<\/a>> ; # Thermodynamique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/nano_structures_d_adn<\/a>> ; # Nano-Structures d\'ADN<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/microfluidique<\/a>> ; # Microfluidique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/puce<\/a>> ; # Puce<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/coilhac_clothilde_1991<\/a>> ; # Clothilde Coilhac<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Organization\/communaute_d_universites_et_d_etablissements_universite_grenoble_alpes<\/a>> ; # Communaut\u00E9 d\'universit\u00E9s et d\'\u00E9tablissements Universit\u00E9 Grenoble Alpes.<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/rondelez_yannick_1975<\/a>> ; # Yannick Rondelez<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Organization\/ecole_doctorale_physique_grenoble<\/a>> ; # \u00C9cole doctorale physique (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/guillou_herve_198<\/a>> ; # Herv\u00E9 Guillou<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Organization\/institut_neel_grenoble<\/a>> ; # Institut N\u00E9el (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/elezgaray_juan_1963<\/a>> ; # Juan Elezgaray<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/bourgeois_olivier<\/a>> ; # Olivier Bourgeois<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/charlaix_elisabeth_1958<\/a>> ; # Elisabeth Charlaix<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/rodriguez_viejo_javier<\/a>> ; # Javier Rodriguez-Viejo<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2018<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"L\'ADN (acide d\u00E9soxyribonucl\u00E9ique) est le support de notre g\u00E9nome, c\'est aussi un biopolym\u00E8re dont les propri\u00E9t\u00E9s d\'hybridation de deux simples brins compl\u00E9mentaires en une double h\u00E9lice permettent son utilisation comme brique \u00E9l\u00E9mentaire pour l\'auto-assemblage de structures avec une r\u00E9solution de quelques nanom\u00E8tres. Parmi les diff\u00E9rentes m\u00E9thodes d\u00E9velopp\u00E9es, l\'origami d\'ADN dans lequel un simple brin d\'ADN issu du g\u00E9nome d\'un phage est repli\u00E9 algorithmiquement par un ensemble de brins synth\u00E9tiques plus petits s\'est d\u00E9montr\u00E9 tr\u00E8s robuste pour l\'assemblage de structures bi ou tridimensionnelles. La conception de ces origami est bas\u00E9e sur la thermodynamique \u00E0 l\'\u00E9quilibre, c\'est \u00E0 dire sur l\'optimisation de l\'appariement compl\u00E9mentaire des bases. Cependant, bien que des outils interactifs qui facilitent la conception de structures aient \u00E9t\u00E9 d\u00E9velopp\u00E9s, tr\u00E8s peu de recherches se sont focalis\u00E9es sur le processus du repliement et sur son optimisation. Notre travail a consist\u00E9 \u00E0 \u00E9tudier la thermodynamique de nanostructures d\'ADN afin de mieux comprendre le processus d\'assemblage et d\'en identifier des \u00E9tapes cl\u00E9s.Nous avons effectu\u00E9 des mesures en calorim\u00E9trie diff\u00E9rentielle \u00E0 balayage (DSC) sur des structures mod\u00E8les et des origami d\'ADN. Ainsi, nous avons pu identifier la pr\u00E9sence d\'\u00E9tapes cl\u00E9s dans le repliement de nanostructures comportant un petit nombre de brins d\'ADN. Nous montrons qu\'en modifiant les s\u00E9quences il est possible de changer la coop\u00E9rativit\u00E9 et la stabilit\u00E9 de l\'assemblage des nanostructures et donc de modifier le chemin de repliement.L\'\u00E9tude d\'origami simplifi\u00E9s comportant une ou deux agrafes nous a permis de mesurer l\'influence de la position des agrafes, des tailles de boucles et de l\'orientations des brins d\'ADN sur la thermodynamique du repliement.Enfin, les mesures calorim\u00E9triques effectu\u00E9es sur des origami d\'ADN nous ont permis de r\u00E9soudre l\'hybridation collective d\'ensemble d\'agrafes. Cela nous permet de hi\u00E9rarchiser l\'assemblage de l\'origami en domaines distincts.Notre travail de th\u00E8se a \u00E9galement consist\u00E9 au d\u00E9veloppement de m\u00E9thodes innovantes de nanocalorim\u00E9trie ultrasensible int\u00E9grant de la microfluidique. Ces m\u00E9thodes calorim\u00E9triques permettront d\'acc\u00E9der aux param\u00E8tres cin\u00E9tiques de l\'assemblage en plus des param\u00E8tres thermodynamiques \u00E0 l\'\u00E9quilibre.Nos r\u00E9sultats obtenus sur les nanostructures mod\u00E8les montrent qu\'il est possible d\'optimiser la conception des nanostructures d\'ADN en int\u00E9grant dans la conception le processus d\'assemblage. Des nanostructures d\'ADN \u00E0 l\'assemblage performant permettront peut-\u00EAtre \u00E0 l\'avenir le d\u00E9veloppement d\'automates mol\u00E9culaires synth\u00E9tiques qui sont une des applications tr\u00E8s prometteuses de ces syst\u00E8mes.<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"DNA is the support of genetic information. The property of self-assembly of two complementary single strands to form a double helix enable the use of this biopolymer as a building block for nanofabrication. DNA origami are a method which enable the self-assembly of 2D or 3D nanostructures. In this method, a long single-stranded DNA taken from the genome of a phage is folded on itself in a programmable way thanks to a lot of short synthetic DNA strands. The design of origami is based on thermodynamic and on the optimization of the base pairing in the structures. However, although interactive tools that facilitate the design of DNA nano-structures have been developed, we know little about the folding process and its optimization. In this work, we study the thermodynamics of DNA nanostructures in order to have a better understanding of the folding process and to identify the key steps.We performed differential scanning calorimetry (DSC) on model structures and DNA origami. Thus, we have been able to identify the presence of key steps in the folding of small nanostructures. We show that by changing the sequences of the strands, it is possible to change the cooperativity and the stability of the assembly of the nanostructure and thus change the folding path.The study of small origami with one or two staples allowed us the see the influence of the position of the staples, of the sizes of the loops and of the orientation of the staples on the thermodynamic of the folding.Finally, the calorimetric measurements performed on origami allowed us to solve the collective hybridization of staple sets. This enable us to prioritize the origami assembly into separate domains.This work also consisted of the development of innovative methods of ultra-sensitive nano-calorimetry integrating microfluidics. These calorimetric methods will give us the access to the kinetic parameters of the folding and to the equilibrium thermodynamic parameters.Our results obtained on model nano-structures show that it is possible to optimize the design of DNA nanostructures by integrating the assembly process in the design of the structures. Such high-performance DNA nanostructures may allow in the future the development of molecular robot which is a very promising application of DNA nanostructures.<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/5335732490<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Th\u00E8ses et \u00E9crits acad\u00E9miques<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"fr<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Thermodynamique de l\'assemblage de nano-structures et d\'origami d\'ADN<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1043939390<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/tel.archives-ouvertes.fr\/tel-01831617<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2018GREAY007\/document<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2018GREAY007\/abes<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1043939390<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/530\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Organization\/communaute_d_universites_et_d_etablissements_universite_grenoble_alpes<\/a>> # Communaut\u00E9 d\'universit\u00E9s et d\'\u00E9tablissements Universit\u00E9 Grenoble Alpes.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Communaut\u00E9 d\'universit\u00E9s et d\'\u00E9tablissements Universit\u00E9 Grenoble Alpes.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Organization\/ecole_doctorale_physique_grenoble<\/a>> # \u00C9cole doctorale physique (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9cole doctorale physique (Grenoble).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Organization\/institut_neel_grenoble<\/a>> # Institut N\u00E9el (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Institut N\u00E9el (Grenoble).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/bourgeois_olivier<\/a>> # Olivier Bourgeois<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Bourgeois<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Olivier<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Olivier Bourgeois<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/charlaix_elisabeth_1958<\/a>> # Elisabeth Charlaix<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1958<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Charlaix<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Elisabeth<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Elisabeth Charlaix<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/coilhac_clothilde_1991<\/a>> # Clothilde Coilhac<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1991<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Coilhac<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Clothilde<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Clothilde Coilhac<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/elezgaray_juan_1963<\/a>> # Juan Elezgaray<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1963<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Elezgaray<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Juan<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Juan Elezgaray<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/guillou_herve_198<\/a>> # Herv\u00E9 Guillou<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"198.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Guillou<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Herv\u00E9<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Herv\u00E9 Guillou<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/rodriguez_viejo_javier<\/a>> # Javier Rodriguez-Viejo<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Rodriguez-Viejo<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Javier<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Javier Rodriguez-Viejo<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Person\/rondelez_yannick_1975<\/a>> # Yannick Rondelez<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1975<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Rondelez<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Yannick<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Yannick Rondelez<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/microfluidique<\/a>> # Microfluidique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Microfluidique<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/nano_structures_d_adn<\/a>> # Nano-Structures d\'ADN<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nano-Structures d\'ADN<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/nanocalorimetrie<\/a>> # Nanocalorim\u00E9trie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nanocalorim\u00E9trie<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Thing\/puce<\/a>> # Puce<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Puce<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/adn<\/a>> # ADN<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"ADN<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/calorimetrie_differentielle_a_balayage<\/a>> # Calorim\u00E9trie diff\u00E9rentielle \u00E0 balayage<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Calorim\u00E9trie diff\u00E9rentielle \u00E0 balayage<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/nanostructures_proprietes_thermiques<\/a>> # Nanostructures--Propri\u00E9t\u00E9s thermiques<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nanostructures--Propri\u00E9t\u00E9s thermiques<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5335732490#Topic\/thermodynamique<\/a>> # Thermodynamique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Thermodynamique<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"fr<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.theses.fr\/2018GREAY007\/document<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Acc\u00E8s au texte int\u00E9gral<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n