skip to content
Visual object recognition Preview this item
ClosePreview this item
Checking...

Visual object recognition

Author: Kristen Lorraine Grauman; Bastian Leibe
Publisher: [San Rafael, Calif.] : Morgan & Claypool Publishers, ©2011.
Series: Synthesis lectures on artificial intelligence and machine learning, #11.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Grauman, Kristen Lorraine, 1979-
Visual object recognition.
[San Rafael, Calif.] : Morgan & Claypool Publishers, ©2011
(OCoLC)740853496
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Kristen Lorraine Grauman; Bastian Leibe
ISBN: 9781598299694 1598299697 1598299689 9781598299687
OCLC Number: 720114130
Description: 1 online resource (xvii, 163 pages) : illustrations.
Contents: Preface --
Acknowledgments --
Figure credits. 1. Introduction --
Overview --
Challenges --
The state of the art. 2. Overview: recognition of specific objects --
Global image representations --
Local feature representations. 3. Local features: detection and description --
Introduction --
Detection of interest points and regions --
Keypoint localization --
Scale invariant region detection --
Affine covariant region detection --
Orientation normalization --
Summary of local detectors --
Local descriptors --
The SIFT descriptor --
The SURF detector/descriptor --
Concluding remarks. 4. Matching local features --
Efficient similarity search --
Tree-based algorithms --
Hashing-based algorithms and binary codes --
A rule of thumb for reducing ambiguous matches --
Indexing features with visual vocabularies --
Creating a visual vocabulary --
Vocabulary trees --
Choices in vocabulary formation --
Inverted file indexing --
Concluding remarks. 5. Geometric verification of matched features --
Estimating geometric models --
Estimating similarity transformations --
Estimating affine transformations --
Homography estimation --
More general transformations --
Dealing with outliers --
RANSAC --
Generalized Hough transform --
Discussion. 6. Example systems: specific-object recognition --
Image matching --
Object recognition --
Large-scale image retrieval --
Mobile visual search --
Image auto-annotation --
Concluding remarks. 7. Overview: recognition of generic object categories. 8. Representations for object categories --
Window-based object representations --
Pixel intensities and colors --
Window descriptors: global gradients and texture --
Patch descriptors: local gradients and texture --
A hybrid representation: bags of visual words --
Contour and shape features --
Feature selection --
Part-based object representations --
Overview of part-based models --
Fully-connected models: the constellation model --
Star graph models --
Mixed representations --
Concluding remarks. 9. Generic object detection: finding and scoring candidates --
Detection via classification --
Speeding up window-based detection --
Limitations of window-based detection --
Detection with part-based models --
Combination classifiers --
Voting and the generalized Hough transform --
RANSAC --
Generalized distance transform. 10. Learning generic object category models --
Data annotation --
Learning window-based models --
Specialized similarity measures and kernels --
Learning part-based models --
Learning in the constellation model --
Learning in the implicit shape model --
Learning in the pictorial structure model. 11. Example systems: generic object recognition --
The Viola-Jones face detector --
Training process --
Recognition process --
Discussion --
The HOG person detector --
Bag-of-words image classification --
Training process --
Recognition process --
Discussion --
The implicit shape model --
Training process --
Recognition process --
Vote backprojection and top-down segmentation --
Hypothesis verification --
Discussion --
Deformable part-based models --
Training process --
Recognition process --
Discussion. 12. Other considerations and current challenges --
Benchmarks and datasets --
Context-based recognition --
Multi-viewpoint and multi-aspect recognition --
Role of video --
Integrated segmentation and recognition --
Supervision considerations in object category learning --
Using weakly labeled image data --
Maximizing the use of manual annotations --
Unsupervised object discovery --
Language, text, and images. 13. Conclusions --
Bibliography --
Authors' biographies.
Series Title: Synthesis lectures on artificial intelligence and machine learning, #11.
Responsibility: Kristen Grauman, Bastian Leibe.
More information:

Abstract:

The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/720114130> # Visual object recognition
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "720114130" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/895428910#Place/san_rafael_calif> ; # San Rafael, Calif.
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/cau> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3017309";target="_blank'" ;
    schema:about <http://id.worldcat.org/fast/1055266> ; # Pattern recognition systems
    schema:about <http://id.worldcat.org/fast/872687> ; # Computer vision
    schema:about <http://experiment.worldcat.org/entity/work/data/895428910#Topic/computers_computer_vision_&_pattern_recognition> ; # COMPUTERS--Computer Vision & Pattern Recognition
    schema:about <http://dewey.info/class/006.37/e22/> ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/170932184> ; # Bastian Leibe
    schema:copyrightYear "2011" ;
    schema:creator <http://viaf.org/viaf/170954569> ; # Kristen Lorraine Grauman
    schema:datePublished "2011" ;
    schema:description "The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization."@en ;
    schema:description "Preface -- Acknowledgments -- Figure credits."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/895428910> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/895428910#Series/synthesis_lectures_on_artificial_intelligence_and_machine_learning> ; # Synthesis lectures on artificial intelligence and machine learning ;
    schema:isPartOf <http://worldcat.org/issn/1939-4616> ; # Synthesis lectures on artificial intelligence and machine learning,
    schema:isSimilarTo <http://www.worldcat.org/oclc/740853496> ;
    schema:name "Visual object recognition"@en ;
    schema:productID "720114130" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/720114130#PublicationEvent/san_rafael_calif_morgan_&_claypool_publishers_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/895428910#Agent/morgan_&_claypool_publishers> ; # Morgan & Claypool Publishers
    schema:url <http://site.ebrary.com/id/10530798> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=440321> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3017309> ;
    schema:url <http://proquest.safaribooksonline.com/9781598299687> ;
    schema:url <http://www.morganclaypool.com/doi/abs/10.2200/S00332ED1V01Y201103AIM011> ;
    schema:url "http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3017309";target="_blank" ;
    schema:url <http://dx.doi.org/10.2200/S00332ED1V01Y201103AIM011> ;
    schema:workExample <http://worldcat.org/isbn/9781598299694> ;
    schema:workExample <http://dx.doi.org/10.2200/S00332ED1V01Y201103AIM011> ;
    schema:workExample <http://worldcat.org/isbn/9781598299687> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/720114130> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/895428910#Agent/morgan_&_claypool_publishers> # Morgan & Claypool Publishers
    a bgn:Agent ;
    schema:name "Morgan & Claypool Publishers" ;
    .

<http://experiment.worldcat.org/entity/work/data/895428910#Place/san_rafael_calif> # San Rafael, Calif.
    a schema:Place ;
    schema:name "San Rafael, Calif." ;
    .

<http://experiment.worldcat.org/entity/work/data/895428910#Series/synthesis_lectures_on_artificial_intelligence_and_machine_learning> # Synthesis lectures on artificial intelligence and machine learning ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/720114130> ; # Visual object recognition
    schema:name "Synthesis lectures on artificial intelligence and machine learning ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/895428910#Topic/computers_computer_vision_&_pattern_recognition> # COMPUTERS--Computer Vision & Pattern Recognition
    a schema:Intangible ;
    schema:name "COMPUTERS--Computer Vision & Pattern Recognition"@en ;
    .

<http://id.worldcat.org/fast/1055266> # Pattern recognition systems
    a schema:Intangible ;
    schema:name "Pattern recognition systems"@en ;
    .

<http://id.worldcat.org/fast/872687> # Computer vision
    a schema:Intangible ;
    schema:name "Computer vision"@en ;
    .

<http://viaf.org/viaf/170932184> # Bastian Leibe
    a schema:Person ;
    schema:familyName "Leibe" ;
    schema:givenName "Bastian" ;
    schema:name "Bastian Leibe" ;
    .

<http://viaf.org/viaf/170954569> # Kristen Lorraine Grauman
    a schema:Person ;
    schema:birthDate "1979" ;
    schema:familyName "Grauman" ;
    schema:givenName "Kristen Lorraine" ;
    schema:name "Kristen Lorraine Grauman" ;
    .

<http://worldcat.org/isbn/9781598299687>
    a schema:ProductModel ;
    schema:isbn "1598299689" ;
    schema:isbn "9781598299687" ;
    .

<http://worldcat.org/isbn/9781598299694>
    a schema:ProductModel ;
    schema:isbn "1598299697" ;
    schema:isbn "9781598299694" ;
    .

<http://worldcat.org/issn/1939-4616> # Synthesis lectures on artificial intelligence and machine learning,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/720114130> ; # Visual object recognition
    schema:issn "1939-4616" ;
    schema:name "Synthesis lectures on artificial intelligence and machine learning," ;
    .

<http://www.worldcat.org/oclc/740853496>
    a schema:CreativeWork ;
    rdfs:label "Visual object recognition." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/720114130> ; # Visual object recognition
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.