## Find a copy online

### Links to this item

## Find a copy in the library

Finding libraries that hold this item...

## Details

Material Type: | Internet resource |
---|---|

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
Paolo Mancosu |

ISBN: | 1402033346 9781402033353 1402033354 9781402033346 |

OCLC Number: | 612612734 |

Reproduction Notes: | Online-Ausg. Berlin [u.a.] Springer, 2007. online-Ressource. |

Description: | x, 300 S. : graph. Darst. |

Contents: | Contributing Authors. P. Mancosu, K.P. Jorgensen and S.A. Pedersen: Introduction. Part I. Mathematical Reasoning And Visualization. P. Mancosu: Visualization in Logic and Mathematics. 1. Diagrams and Images in the Late Nineteenth Century. 2. The Return of the Visual as a Change in Mathematical Style. 3. New Directions of Research and Foundations of Mathematics. Acknowledgements. Notes. References. M. Giaquinto: From Symmetry Perception to Basic Geometry. Introduction. 1. Perceiving a Figure as a Square. 2. A Geometrical Concept for Squares. 3. Getting the Belief. 4. Is It Knowledge? 5. Summary. Notes. References. J.R. Brown: Naturalism, Pictures, and Platonic Intuitions. 1. Naturalism. 2. Platonism. 3. Godel's Platonism. 4. The Concept of Observable. 5. Proofs and Intuitions. 6. Maddy's Naturalism. 7. Refuting the Continuum Hypothesis. Acknowledgements. Appendix: Freiling's 'Philosophical' Refutation of CH. References. M. Giaquinto: Mathematical Activity. 1. Discovery. 2. Explanation. 3. Justification. 4. Refining and Extending the List of Activities. 5. Conc1uding Remarks. Notes. References. Part II. Mathematical Explanation and Proof Styles. J. Hoyrup: Tertium Non Datur: On Reasoning Styles in Early Mathematics. 1. Two Convenient Scapegoats. 2. Old Babylonian Geometric Proto-algebra. 3. Euc1idean Geometry. 4. Stations on the Road. 5. Other Greeks. 6. Proportionality - Reasoning and its Elimination. Notes. References. K. Chemla: The Interplay Between Proof and AIgorithm in 3rd Century China: The Operation as Prescription of Computation and the Operation as Argument. 1. Elements of Context. 2. Sketch of the Proof. 3. First Remarks on the Proof. 4. The Operation as Relation of Transformation. 5. The Essential Link Between Proof and AIgorithm. 6. Conc1usion. Appendix. Notes. References. J. Tappenden: Proof Style and Understanding in Mathematics I:Visualization, Unification and Axiom Choice. 1. Introduction - a 'New Riddle' of Deduction. 2. Understanding and Explanation in Mathematical Methodology: The Target. 3. Understanding, Unification and Explanation - Friedman. 4. Kitcher: Pattems of Argument. 5. Artin and Axiom Choice: 'Visual Reasoning' Without Vision. 6. Summary - the 'new Riddle of Deduction'. Notes. References. J. Hafner and P. Mancosu: The Varieties of Mathematical Explanations. 1. Back to the Facts Themselves. 2. Mathematical Explanation or Explanation in Mathematics? 3. The Search for Explanation within Mathematics. 4. Some Methodological Comments on the General Project. 5. Mark Steiner on Mathematical Explanation. 6. Kummer's Convergence Test. 7. A Test Case for Steiner's Theory. Appendix. Notes. References. R. Netz: The Aesthetics of Mathematics: A Study. 1. The Problem Motivated. 2. Sources of Beauty in Mathematics. 3. Conclusion. Notes. References. Index. |

Series Title: | SpringerLink: Springer e-Books; Synthese library, 327. |

Responsibility: | ed. by Paolo Mancosu, Klaus Frovin Jørgensen, Stig Andur Pedersen. |

## Reviews

*Editorial reviews*

Publisher Synopsis

From the reviews:"As its title suggests, the book deals with themes that are of great interest to mathematics educators. ... this book is a collection of excellent papers by distinguished authors. It also shows a high standard of book production, in its layout, paper quality, draftsmanship and binding. ... this book deserves the attention of all those with an interest in mathematics education." (G. Hanna, Educational Studies in Mathematics, Vol. 64, 2007)"This fascinating collection of essays is a must-have for those who are interested in the history and philosophy of mathematics ... . this is a book that libraries will want to have, particularly if they strive to have good collections on the history and philosophy of mathematics." (Fernando Q. Gouvea, MathDL, August, 2005) Read more...

*User-contributed reviews*